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§ 1. Introduction

Ludwig, Jones and Holling™ proposed an ordinary differential equmation o
deseribe the budworm density in the forest. Ludwig, Aronson and Weinbergert?
considered the spatial effect of the budworm, by adding a diffusion term in the
original model. They also studied this problem for a region of infinite girip in
detail. Recently, Guo Ben—yu. Mitchell and Sleeman®™! and Guo Ben~yu, Sleeman,
Mitchell™ congidered this problem for circular and rectangular regions respectively
and very precise results were obtained. Gno Ben—yu and Mitchell®™ also studied the
agymptotic behavior and the econvergence of a reaction-diffusion difference scheme
in an infinite strip. |

In this paper we consider the linear and nonlinear reaction—diffusion difference
equations, the exigtence of the positive solution of the steady problem and the
asymptotic behavior of the solution of the unsteady problem. Finally, we prove the.
convergoence of the approximate solution.

§ 2. The Difference Scheme for the Linear Problem

In this section we consider a linear model whose boundary condition means that
the exterior is a lethal environment for the budworm, Assume that £ is a bounded
open domain in B? and Uz, ¢) is the scaled density of the budworm population.
Then U (@, ) satisfies the equation -

%? AT=U, 2€Q,0<i<oo,

Uz, 1) =0, o€aQ, 0<i<co, 2.1)
Uz, 0)=Toe), 2€Q,
where Uy(2) is a given function and Uy(a) =0 on 94Q.
If Us(w) =U,(p) where p=|o| and if Q is a circular domain with the radius 7,
then -
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. R— i =

.aa? FePU=U, 0<p<1, 0<i<00

Ulp, 0)=Uo(p), 0<p<l
1 o 1 ¢
Wltlh 8-32 &ndPﬂ—ap 0 ap-
Let A and 7 be the mesh sizes of the space and time respectively, whers NA=1
N being a positive integer. We define

Qv=A{p/p=h, 2h, -, (N —1)k}

and @ = {2,488, where 82, is the boundary of £2,.

Let n*(p) be the value of the mesh function # at the point p=jk and #=~Fkr, and
n(p), v (p) and nf(p) denote respectively the forword, the backward and the central
difference quotients of n*(p) with respect to p. - Similarly, %¥(o) denotes the forward
difference quotient of 7*(p) with respect to . We define

1 1
Py (p) = —nea(p) g s (P)+
Let 4*(p) %e the approximation to U(p, k7). The Orank-Njicolson scheme for
solving (2.2) is -
u;<p>+--Pmp>+—P-u*ﬂcp)== = (p) o U (p).  pE Oy, k>0,

W (0) =0, u*(1) =0, k>0, _- (2.8)
u(p) =Uo(p), P&
The corresponding steady equation is

{ e Py (p) =‘U(P): pPE< 2, (2 4}
2,{0) =0 2(1)=0. |

§ 3. The Discrete Green Function

To study the behavior of the solution of (2.4), we define the discrete Green
function as -

i ’ 1 ;
: P?}GF(P: P) "'}i‘ﬂ_a(P: P)J PEQM (3.1)
. Gh:p(oj PF) =0.: G}‘ (11 IO!) =0’ ' '
where p’'€ 3, and 8 (p, p) is a Kronecker function.
Lot

G (p) = (Ga(h, ), =, G (N =D)h, )7,
B(Pr) =(O: . 0: 1: ‘;): ':'1 0) ’ Pf=jrh'
(#—1) (N—-1—3"

Then from (3.1) we obfain
BGw(p) =5 3 (0,
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[ 4By, 2d

1
Clearly, 0<B;< DR

If all elements of a matrix M or a vector Y are nonnegative, then we denote
M=0 or ¥Y>0. If their elements are all positive, then we say M >0 and ¥Y>0. It
can be checked easily that the matrix B is unreduced and diagonally dominant, and
so it is monotone. Hence there exists B~*>0. Therefore G;(0’) exists. Because
3(p") =0 and 8(p") #0, it can be easily verified that

Lot Gh (P: P') >01 VPE Qﬂ' ' (.3 '3)
e
H={n/7,(0) =0, 1) =0}.
Then
n{p) =h2P§ Ga(p, o) Pan(p'). (3.4
' A .
In particular, ‘we take
1—4% p=0
B
??(P {1-921 P%D'
Then
.E- P=h
Pn??(P) =4 27 ’ (3.5)
4, 2h<p<l—h,
and go from (3.3) and (3.4), we have
__ 722
0< 3 Galp, p) < (3.6)
AfE Ly -

§ 4. The Behavior of the Solution of the Linear Problem

We firgt consider the eigenvalue problem

{Phqscp>=w<p>, pE O,

$,(0) =0, ¢(1)=0, (4.1)

which ig related to (2.4).
Proposition 4,1, All eigenvalues of problem (4.1) are simple and positive,
arranged ag
4
1—A®
The eigenvalue A{” has a corresponding eigenfunction ¢®(p) with ¢V (p) >0, for
all PE Q},.
- Proof. Firstly, problem (4.1) is equivalent to the eigenvalue problem of B.
Since B is a real Jacobi matrix, every eigenvalue of B is siraple and real. I is not
difficult to verify that all of them are positive.

AP AR o KAFD YEB>0,
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From (3.4), we have - '

$(p) w % Glp, NOE. @)

Let |
G;f=hﬂ (G (P;_ P ))cﬂfiaxiﬂfl}: b € Q_’*' o (4.8)
b= (b, ba, -, dx-1)", S=d(4h)

and introduce the maximum norm, i.e. l[c;b"mm max . |yl .
1<jeN—

Let K be the subset mv'olvmg all nonnegative vectors in R¥-%, Then K is a
normal cone. Define

={¢E K: ‘b“wél}:
Si={PEK, |d|.=1}.
Then the mapping G4 on K to K is continuous. Because G4{p, p') >0, we have
a=inf |G |.>0. ‘

g8, : .
By Theorem 17.8 of [6], G, has a nonnegative eigenvector on 15’1 Assume that ¢
>0 with ¢i”=1 is the eigenvector associated with [AP]:. Equation (4.2) is
equivalent to

’ B =72, R (4.4)
Gﬂnsequentry it can be verified by induction that
G > PP > > PRL 1 >0

@ >0,

If s=1, then A{" has a corresponding positive eigenvector; otherwise, AL<A®. Let
@ be the eigenvector associated with Af¥ and z=¢“+ 8¢®, We make 8 sufficiently
large such that 2>>0. Then it follows that for all k, : '

}:Z E (?hil}) -k‘.b{i}_i_ﬁ (a"gs)) —Iﬁqﬂ,(ﬂ} 0’

Hence

1.0,

1)
,,“\g,m_{_ﬁ(;;"g ) >0,
Since k is arbitrary, we have ¢P>0, Finally, from (4;2) and (3.6) we obtain
4
1)

AP = 175 |

Let Iz =~/ML". By Proposﬂsmn 4.1 we Obtaln _

Theorem 4.1. If1<1;, then the steady problem (2 4) has only the zero solut@m.
If 1=1Ux, then there is a solution v(p) with v(0)>0 for all p& Q.

We now cnnmder the asymptotic stability of the solu‘ﬁmn of (2 8). Let

N-1

u'(p) = 2 ab*(s) 9 (), Uo(p).= 2 @' (P) » PE L.
Bubstituting them into {(2.3), we obtain ™ |

T ET
I Ai?
B f e
g S Jw
2 2

from which, we obfain the following result,
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AT

Theorom 4.2. Let u*(p) be the solution of (2.3). Then
(1) if I<l then for any initial value Up(p) and A>>0,
Ilm wWW(p) =0, Vp&

(i1) éf I>1;, then for every h'.>0 there are solutions u*(p) with m*bﬁmmly small
tnittal values such that

B-soo

lim «*(p) =00, VpE& Q:u (

§ 5. The Behavior of the Solution of the Nonlinear
Steady Problem

In thig section we consider the following logistic model (see [2]—[4])

ag +8PU=U~U2 0<p<l, 0<i<0o,

(b.1)

=0, U(1, $) =0, 0i<oo,

U(p, 0) =Uo(p), 0<p<l,

where 0<To(p) <M, Let My=max(M,, 1). Guo Ben—yu, Mitchell and Sleema.nm_
proved |

OQU ("p, <M, 0<p<l, i=0. 6.2)
The difference scheme for solving (5.1) is

(o) +5 P (o) + & P (0) = 50 (p) + 5 4 (0) ~ [ (0)1% pE D, >0,
(0)=0 (1) =0, k?ﬂ
Wip)=Uslp), pEH, .

with the corresponding steady equation - -

s Py (p) =v(p) —‘Uﬂ(P): o€ Oy, |
{ v,(0) =0, o(1) =0, - (0.9

(6.3)

Let
Ve= (91, va, »+; wx_1)7, vy=0(jh),
Q(V) = (0], v3, ***, Vy_1) 7.
Then the matrix equation of (5 4y is | | g =
| V—sBV—-g(V) =0, (6.5)
Proposition 5.1. The necessary condition for problem (5.5) to have a posi-

tive solution is s< 8} where s3= (A) ™, |
FProof. Let I be the identity mapping. Since B‘ 130 &nd the spectral radius

r(B™') = g3, s0 if s> e;, then

(- sB)'l-—-B-Iz B <0,

from which and (5.5) we conclude |
Ve (I~eB) (V) =<0,
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Proposition 5.2. There exists >0, such that for all € (e;—8," &}), problem"
(56.5) has a unique positive solutmn Vs Wh_lch depends continuously on s, and
V(e)—0 as e—>g;.
Proof. (B.D) is equivalent to

V-G V+Gg(V)=0. . (6.8

From (3.6}, we have
Gl =max 3 BG(p, p)<T, VE>O,
pERy piE

The mapping sy— G is a linear Fredholm 8 operator on R¥-1 150 Rl"‘r ~1, Let JV' !
and % denote the null space and the range of g3—G, respectively; then R¥'= 4@
%. We take the basis of 4" {0 be the eigenvector ¢ = (p®, «+, GF2)* with ln-cﬁi’"
>G>0 > >0, We take

GO, P (B, G, wee, GO, woe, ST, GO =80, 2<E<N —1, 1<G<N —1,
to be the basis of R¥™%, Take again an element ¢= (1, 0, ---, 0)* in the dual space
(R¥-1)* of R¥*, Then [e]nv1yp=1 and e(¢p®) =3,;. We deﬁne the mappmg p on
RY¥1 0 A a8 .

| pr=e(U)pV, Y& RYL, :
Then p is a projecfion on R¥-1 40 4", Since &~ G, is a one—to-one mapping on % to
%, we can define the generalized inverse opera.tor A of sﬂ — G4 on R¥1 gg

'“--:L— (Z"G})"ldz

2917@ r Bh'—iz

where the curve [" is made up of a finite number of rectifiable curves. e is in the
region exterior to I'. All other eigenvalues of @y are in its interior (see [7]). It can
be proved that | A| <M where M is independent of A and that

A(er—Gh) = (e5—G4) A =g, (6.7)
where ¢ denotes the projection of B¥~! onto #.

Let s=s8;—a, V=0(¢pP+¢) in (5.8) where 0<w§ao<:l, C=C(x) is a real

number depending on « and vector Ye ¥. We have

C (s —Gn) (§V+¢) —aC (¢ +¢p) G,.g(c)(¢<1)+.p)) 0
which is equivalent to

O —ad)p+ AGrg (O($D+§)) =0, (5.8)

quS‘”“PGny(G (¢‘1’+ ¥)). | 5.9
We firsi obtain from (5.8) |
Y= —O(I—ad) " AGHg($D+¢). 'y (5.10)

Let F(\b, O, a) danote the right-hand term of (5 10) and 8, ={!f1€ @' l¢¥| <o} for
some ¢ >0, Clearly

T S M(1+20+0") |/
¥l =17, O, D I<—37 75~ 10I.

It can be proved that there is a constant >0, independent of 2 and «, such
that for 0<a<<og and |O|<r, F(P, O, o) is a contractive mapping on 8, to 8, with
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respect to ¥, and Frechet's derivative operators F,(, U, «) satisfy

HF.(, O, e)ﬁﬁl-, Ve S, o (5.11)

uniformly for O and «. Hence if |C'|<<r, then (5.8) hasa unique solution in S,.
Moreover, when O—0, $(C, &)—0 uniformly for a.
From (5.11) and the following inequalify

|F($?, 0, @) ~F®, O, ) | <|FiPP+EWP—¢®), O, o) |1 | P — lﬁ‘mll
where P, p@E §, and 0<<€<<1, it can be eagily verified that §(C, o) is a uniformly
continuous function for ¢ and «. For an arbitrarily fixed o with 0<<a<Cay, Let
(W, O) =+ O(T—ad) T AGg (6P +¥).
Clearly, it ig continnously differentiable for ¢ and C, and f, (O 0) =1, Therefere'

Y, (0, o) i existent and continuous.
We now consider (56.9). For a>>0 we have

0(a) ==-0[Grg (O ($P-+ (0, @)))1>0,

from wleieh wo got
,06=06[Ghg (P +¥(C, a))], ¥(O0, a)ES.. (5.12)

| W (g, O) =a—Ce[Grg (¢ +¢ (0, a))].
CQlearly, it is continuously differentiable about the point (0, 0) and
| W (0, 0) =0, |
| | Wi (0, 0) = —e[Grg(d™)] +#0. J
By the Existence Theorem of Implicit Functions, (5.12) has a unique continuous
solution C=0(a) for 0<a<<o<a, with O(0)=0 and 0<C(a)<r where r is.

independent of %4 provided a« is sufficiently small. Therefore (5.5) has a unique
continuous golution |

L'Elt s ¢

V=0(a) (P +¢(0(a), @)).
Finally, C(a)—>0 as a—>0 and so ¥—>0 as «—0. If § is sufficiently small, then
H'I'(U (ﬂj 3 ﬂ) H{f.bu) 1e Hence '

V=0(a) (™ +'.l' (O (@), o)) >0.

Note that a= sy — &. The proof is completed.

From the previous propositions we obtain

Theorem 8.1. If 1<, then problem (5.4) has no positive solution. If 121,
then it has a solution V(p), such that for all p& 2y, V{(p)>0.

§ 6. The Asymptctic Behavior of the Nonlinear
| Unsteady Problem |

In this section we study the asymptotic behavior of (5.3) by using a generalized
version of the technigue in [6]. Let az>>0 and

?n(s, @)1 (0) = (0 + 5 Pag*(p) + 5 Pwr™ (p) — T? “(0) —5 = 7" (p) +alr? SN
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Proposltlonﬁ 1. If 0<z<s"; |£¥(p) | <M, and |
Dy (e, ﬁ)n"’(.o)%ﬂn(ﬂ 2§ (p), PE &y, %=0,
s (0) =£5(0) =0 k>0, | : O 6.1)
(D<), =0, - - -'
n°(p) <E%(p), PE &,

o 2h* o -
where 7 =m1n{2, So T dadl = hﬂ-}, then for all p€ @, and k>0, v*(p) <£"(p).

Proof. Let 9°(p) =9*(p) —&%(p). Then from (6.1),

(1-F)7" @)+ P (o)

<(1+ T~ 2078* () ) (0) — 2= P (p) — an [ (o) 1. (6.2)

To prove 5*(p) <0 for all p€ 2y and k>0, we shall apply the induction, When % =0,
the conclusion is clear. Assume that 7*(p) <O for all p€ 2, and 7**(pp) =max 7 (p)

P&y

with po=4oh. It can be verified that Pyn*(ps) =0, — Pun* (pg)ﬂé—--%—_ﬂk(po) from
which and (6.2) we have
»

L (1) e < (1+ 5 — 2008 (o0) —£2 ) (po) (6.9)

Since v<<7*, hence 7%*1(p,) <0 and so 7¥1(0) <0 for all pE Q). This completes the
induction.

Proposition 6.2. If v*(p) is a solution of (5.3) and »<+*, then O0<u*{p) <

M

Proof. Let 9*(p) =u*(p) and £*(p) =M, in Proposition 6.1; then «*(p) <M. To
prove u*(p)>0, we may use the induction similar to that used in the proof of
proposition 6.1, but we put v***(p) -=m£n ¥ (p).

Theorem 6.1. Let k>0, 0<v<3*, ©w*(p) and v(0) be the solut»wm of (6.8) and
(0.4) respectively. Then

(1) if I<h, then for any nonne initial value Uy(p), we have ]_lmu" (p) =();
(i) if I>1;, Uo(p) =0 and Uslp) =0, then IEE wW(p)=v(p).
Proof. Let w*(p) be a solution of (2.8); then
Dh(s, 0)u*(p) = — [u*(p)]*<0= D1 (s, 0)w*(p), pE€ Oy, k>0,
Wt (0) =ut(0) =0, &0,
w¥(1) =u*(1) =0, k=0,
w'(p) =u’(p) =0, pPE L.
By Propositions 6.1 and 6.2, we have
0<u’(p) <u”(p).

If 1<z, then «*(p)—>0 as k—0. This completes the proof of (i). |

Now asgume >, and 0<m<U,(p) < M, for simplicity. Let E*(p) be the solution
of the following problem
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( Du(e, DE*() =0, pE€Dy, k>0, _
$ BE(0) =0, B*(1) =0, k=0, (6.4)

1EO(P) =My, pEC L, |

where M,=max{M,, 1}. By Proposition 6.1 we have |
w*(p) <E*(p) <M,. (6.5)

Let 1>>1>1};, which corresponds o s<<e< a}, and let ¥:(p) ha a solation of the
following problem

{ 8PV :(0) +Vi(p) 1—=V3(p)) =0, pE
Vi‘.p(o) "0, Vi(l) == (),

Since |V:]|—>0 as s—e;, there is some ! such that |V;|<m.
Let G*(p) be the solution of the following problem

( Dy(e, )G (p) =0, pE€ 2, k=0,
s 6G5(0) =0, @*(1) =0, k>0,

L G°(p) =V3i(p), pE L.

From Proposition 6.1 and (6.5), it follows that

, GF*(p) <u*(p) <E*(p). | (6.6)

- We claim that i suffices to prove that '
lim E%(p) =v(p), (6.7)
ltr G*(p) =2(p). (6.8)

In fact, from (6.5) we have E'(p)<<M,=E°’(p). By putting »*(p) = E**1(p),
£*(p) = E*(p) and a=1 in Proposition 6.1, it follows that

O<E*"(p) <E*(p) <M.
And so there exists ¥i{p) such that
P (p) =l—im E*(p), Vp& G,

Let k—>co in (6.4), and 50 ¥ (p) ig a solutlon of (5.4). From Pmpamtlon 5.2 we

bhave Y1(p) =v(p) which implies (6.7).
Equality (6.8) can be proved by an argument similar to that used above.

Finally, the conclugion (ii) follows from (6.6), (6.7) and (6.8).

§ 7. The Convergence of the Differencé S.heme for the
Nonlinear Unsteady Problem

To estimate computational error, we introduce the following notations:

(7, &) o,= 2th§& en ()€ (p),

lnlga= (0, n) o,

1 1
ln'5m1="§'ﬂnﬂugn+_ﬂ_"m"5ﬂ

Proposition 7.1, For all mesh functions n(p), we have
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i iy e 1

(1, Pam) o, = |05, ok [n,(1— h)]”—arh’[m(ﬂ)]’-ﬂl—h)n(l —h)n,(1—Ah)
—any(Dn,(1—h) +whn(h)n,(0).
Proof. From Abel’s formula, we obtain
h 2 Yo(p)z(p)+h 24 ¥ (p) 2:(p) =Y (D)z(1~k) =Y (2)2(0),

b3 Va(@)e(o) +h 3 ¥ ()20 =¥ (1-R)z(D) ~¥ 02 (A,

whence |
~ (0, Ns5) 0,= —2mwh 24 p1(P)70p (p)
—2ah 23 Len ()15 (p) — 2a0m (L), (1 —B) +2mwhn (B) 1,(0)
=2uh 2 {p[:(0) 1"+ (p)1s(p) +Hlm,(p) 1%}
—2am (D), (1 —A) +2mhn(B)7,(0).
Similarly,

- — (0, nep) a,=2xh 33 {p[ne(0) 1"+ (p) ma(p) —hlms () 1"}

—2;:::(1—7»)«7(1 h)'qp(i —h).

Summing therg up, we complete the proof,
In pariicular, if 5,(0) =g, 5(1) =0, then

(n, £Pan)o,= |‘??|3m+7[1?(1“?5)]’—“}"59""“?@97@)- (7-1)

Proposition 7.2, It (1) =0, thon [n]3,<-% |nl3...
Proof. We have |
1—-%&
n{p) = —h g e (P

whence .
1<K E oI )1 B L <223,

from which |
1
Inlte<— 70| uphpdp‘é-{“

Proposition 7.8. For any mesh function #*(p), wa have

(p*+ 02, 9f) o, = ([ 77°]5.) +-

Now consider the convergence of the difference scheme, Let U (p, k'r) and *(p)

be the solutions of (5.1) and (5.3) respectively, ¥ (p) =T (p, kz) +7*(0). B*(p) and
¥ aTe approximate errors of (5.8) at the interior points and the origin respectively.

Then

1 - .
1al3,< 5 1 Bu

() -5 Paii*(p) + 5 Do (o) =5 8(0) + 5 #*(p)

-—”"(p) [4* (o) +U(p,. k) ] ——R”(p), pE &5, k=0, (7.2)
uk(0) =¥, u*(1) =0, k=0, | ;
e (P) = Or P G L.
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Taking the discrete scalar product of (7.2) with [#*(p)+u**'(p)], we have from
Prt}pomtmns 7.1,7.8 and (7.1).

[[*|2,]:+—= |u"—|—u"+1[”,“+ [u*‘(l—-h)+*u:"“(l —h)]?
+ (uh+ u-"“, u* (-~ (kr)) Vo,

- . ot " x 4
ot w3, — @ +u*t, B*) g, A E"’g"" ()8

2
5“’” ~5— [u* (k) +u**1 (B) ] [r¥ 4 ™11, @3
From Propusitinn T 2 we have | |
e:;h u* (A -+t (A) I ) ’ <2msh?[u* (%) -+ HI’H (ﬁ)]ﬂ‘f' (‘i‘m*f' e

< e |ub+uttt ﬂ?;,‘,_—l——g (7%t 2

,g_;_|ak_l_ +1|2“_l_
Since 0<u*(p) <M, 0<U (p, kv) <M;, we have

@+, BT (k1) D o= — (), w*+U (k) o+ @, P[ub+T (b))
' > — My [u**|3,+ [w*]3,].

gl k1Y 2
32 +fr_; e

Bo it follows from (7.8) that

~kbd || 2 1+ 2v+ M7 IMEN2 T % 2.
uu‘ "ﬂ-ﬁﬂ‘i'»g 1'—2'7!—'M T !nu' “ﬂa ! 2(1"'2’17—M1T) "R “ﬂi
JBET 9 .J.:L k+1 2.
T By O TR
1
If 7 55 AL then
Y ﬂ.ﬁk ” & PE62(2+M1}ET
wiera

— T | 3 2
o® S =2 — i) ; 2(4:]Rshgh+ﬂ‘l?-5(16h +1) | ¢ ) |
If p*—0 as A—>0 for all kv<T, then scheme (5.8) is convergent for € (0, T].
It 3?—%——1—8 where 6>-0, then we can obtain the following estimates

s on g o
5 Hﬂ"*‘u"“‘”%ﬁl IH“-I-H"“liu,

l(%k_l_ak-l-i Rlﬁ) l,g__ ’] Iﬂ+uk+1”2 + “Rﬁ”
1 |

= Ii?"‘+ 5"“!5,.,&— R 5.,

MkI(ﬁk(b)+u"+1(h))(r"’+fr"‘“)l“‘é-——li?"+ﬁ"’"‘1lﬂ - [P,

By substituting the above estimates into (7 8), we obtain

Cluk|3,]e<M,[|u*]2 +||u"+1||2;|+ HR"H,;,-. ~—— (BOA2+g) (r¥+-*1)
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whence

[e* 5, <p"**,

where

ey S T g 2 g
= Ba—ED B_Zﬂ [2“3 ﬂg,,+mrs(83h +¢) | ¢ 12].

If 5*—>0 as h—0 uniformly for all %0, then soheme (5.3) is convergent

uniformly for {>0.

[1]
(2]
[3]
[4]
[5]

[6]
[7]

[8]

References

D. Luwdwig, D. D. Jones, C. C. Holling, Qualitative analysis of insect outbreak systems: the spruce
budworm and forest, J. Anim. Heol., 47 (1978), 315—333.

D. Ludwig, D. G. Aronson, H. P. Weinberger, Spatial patterning of the spruce budworm, J. Math,
Biology, 8 (1879), 250—263.

Guo Ben-yu, A. R. Mitchell, B. D. Sleeman, Spatial patterning of the spruce budworm in a clrcula.r
region, UDDM Report DE 83: 5, 1983.

Gluo Ben-yu, B. D. Bleeman, A. R, Mitchell, Spatial effects in a two-dimensional model of the budwnrm—-
balsam fir ecosystem, Comp. Math., Appls., 12B (1986), L117—1133.

Guo Bon-yu, A. R. Mitchell, Analysm of a non-linear difforence scheme in reaction-diffusion, Numer.
Math., 49 (1986), 511—527.

%iﬂE,HE%ﬁEm%ﬁ,ﬁﬁAEHﬁﬁﬁ. 1982.
K. H. Atkinson, The numerical sglution of bifurcation prt}blems SIAM J. Numer. Anal., 14 (1977},

584—589.
D. C. Aronson, H.'F, Weinberger, Multidimensional nonlinear diffusion a.rising in population genstics,
Adv. in Maith., 30 (1978) , 33—76.



	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg
	File0010.jpg
	File0011.jpg
	File0012.jpg

