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FINITE ELEMENT APPROXIMATION TO
AXIAL SYMMETRIC STOKES FLOW~

Yine LoNeg-AN (Rl ®)
(Poking University, Beijing, China)

The finite element method for Stokes flow has been extensively and intensively
studied, and the methed for axial symmetric elliptic problems has also been
touched, see e.g. [1]. The purpose of this paper is to discuss the finite element
method for axial symmetric Stokes flow and prepare for the discussion of the
infinite element approximation to axial symmetric Stokes flow, which will be
published in another paper.

Let us give the classical statement of the three dimensional axial symmetric
Stokes flow. Lot o= (4, #;) €ER? and Q be a2 bounded polygonal region on the half
plane #;>-0. We c?nsider the following problem: to find u(z) = (uy(z), ua(®@)) and

p(w), satisfying

p(—‘?(mi‘?ui)/%—kuﬂmi)} gi =f1, o,

—-p?(mi‘?ug),/m; 1| g‘i; =fﬂ: 'T’EQ:

o o
"'é"‘m';"(m:lul)l o (zyte) =0, €40,

u=0, o€CoQ\{xn=0},
uy =0, 2€oQ2N{x;1=0}.
If Q rotates around the zs—axis, then a three—dimensional region 2 is formed. The

above problem is a deseription of the incompressible viscous flow on Q with low
Reynold’s number, where the constant p>>0 ig videosity, v velocity, p pressure and

f"_—' (f:[, fg) bl}dy force.
We nesd some weighted Sobolev spaces for the above problem. First we define

the seminorm and norm as

Flmo=( 3 [ aul Df12da)

|| =

r 1/9
iy 2
[Flmo=( 2 171%) -
"The corresponding Hilbert spacos are donoted by Zm™(Q), where a={(a1, @),
lexl
D d* __ Then we define the norm as

oo
¥ 1,0 (| flEa+ 1 f /2|30
1, 00= (| Fidmat+ [ FlI5.2072
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If f can be expressed as J=/r1fs, where f.€0~(2), f2 €05 (RY), Ri={2ER? 2,>0},
then we denote fCO(83). The completion of OF(Q2) with respect to the norm
I+ 1,42 is denoted by Z1(Q). We define f € Z% () if and only if € Z1(Q) N 23 (),
and | DD f/g s 0 is bounded.

Lot H(@)=ZU D) x 2 (@), Ho®)={fEH(Q); flunwen=0}, Mo(Q)=
{9620 (Q): J'n mi-pd¢=0}. Wo consider the bilinear form on H(Q) x H(Q):

a(u, v) =v| &3 (Vg Vou+ ity Vo + vy /od)des, u, 0 H (Q), 1)
and the bilinear form on H(£2) x7°(02):
(0, 2)= = | Pl (@) + o (e Jdn, EH(D), pe2(R). (2

Then a weak formulation of the original problem is: to find (u, p) € Ho(2) %
Mo(£2), such that o _ |

a(u, v)+b(o, p)=F(v), Vo€ HoQ), (3)
b(u, g) =0, Vg€ M), (4)
whore |
. i F{w) =Jam1(f1@;+fa%)dw-

We see from definitions (1), (2) that @, b are bounded and

e, v) =v(|us)i, 0+ |u2io),
and we notice that the inequality of Poincaré-Friedrichg type

lua] 8.0+ [ual 3,0 < Oa(u, w)

holds on H,(2). Throughout the paper U will always denote a positive constant.
We have

a(u, u)>as|ulb@, VYu€ H,(Q), - (5)
where ag>0. Moreover, if f,, f,are appropriately regular, then problem (3), (4)
has a unique solution'?, | | | | 4

Now we consider the finite element approximation to problem (3), (4). The
region €2 is divided into finite convex polygonal regions @, k=1, 2, ---, by finite
broken lines. Then each subregion @, is further divided into triangular elements,
and it is assumed that 2, keep fixed in the further refinement process. It is also
assumed that any two elements in £ meet only in the entire common side, or at
only a common vertex, or do not meet at all. The vertices and midpoints of the
sides of all elements are taken as nodes. The element is denoted by ¢, and the side is
denoted by s, where each ¢ is an open set and the end points are not included in s.
We make quadratic polynomial interpolation for u, and p is a constant on ¢. Then
the subspaces H'u;,(ﬁ}, Mo (Q2) of Ho(Q), Mo(Q) are obtained, and so are the
subspaces H,(2,), M »&2) of H{Q), Z°(Q,). |

This kind of triangulation and interpolation causes loss of precision™. To
overcome thig shortcoming, there are several approaches, see e. g. [4], [5]. But for
simplicity, we only consider thig kind of element. | |

The finite element approximation to problem (3), (4) is: to find (w, o) €
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H o (£2) % Mo, (Q), such that x ' f  FEw® gy .
! aCup, v)+b(v, pa) =F(v), Vo€ Hup(Q), . - (6)
b(un, @) =0, VIEMa(Q) = R
Theorem 1. The solution of problem (8), (7) ewists and is untque.
Proof. It suffices to prove that the corresponding homogeneous problem has

only null solution. Let v, p» be the solution of the homogeneous problem. Taking
g =P 10 (7) we obtain ;

2. ; b(“‘h} Ph)__-{]:
and taking v=u in (68) we obtain

ﬂ(uﬁ:_u’h) =0, o o
By (5), u=0. Then, we take such a v that vanishes at all nodes except the
midpoint of a side. By (2) and Green's formula we know p, remains the same OR
both elements neighboring on s. But s 1d arbitrary; so p, is a constant. Since pn €&
Mo(@), we get pp=0. QED.

We pow discuss the error estimation of the solutions. We will make more
assumption on the ggometry of the triangulation. Assume that a1l interior angles of
411 elements have a positive lower bound f,. Denote by & the largest length of sides,
and by Auw the smallest length of gides. Then assume that b/ hom<O. Let s be one
gide of e. Denote by e, the isosceles triangle with s as the base and @o/2 as the base
angles. Define e, to be the standard triangle corresponding to s. For an appropriate
6, and under the above assumptions, we have the following lemmas.

Temma 1. Ifsup >0, inf z,—0, &, i3 @ standard triangle cowe@oﬁd@ng {o 8,

and xo 18 the end point of s al the w.—awxis, then for any xC e, the angle belween vector
5 — o and the Lo—awts ws greater than Oq/2. ‘
Lemms 2. If inf #,>>0, then ini 2, >C~1h and sup <O inf2;. Similarly, if

inf @40, then sup o <O inT @,
[ E £ :
Lemma 8. Ifinfzy>>0 ande, 18 @ standard triangle corresponding o S, then
i].'.'lf @ QU lﬂf .

Let A(2), =1, --+, 6, be the interpolation basis fanctions of element e, Then
we have : |

Lemma 4. If the node corresponding 10 ?u; does not lie at the :ﬁg—amis, then
1341(&?) ‘ ‘Qaﬂ}ih-_l.

The proofs of the above lemmas are eady and thus are omitted.

We congider approximation of functions in the following. Let s, ¢=1, 2, 3, be
the three sides of element e, and z® §=1, +--, 6, be the nodes. =¥ are vertices if
i< 3 or midpoints if ¢>4.

Lemmab. If f€Z%(e) and fri8 a quadratic polyromial, such that

Fia®)=F(@®), i=1,2,8, ®)
[ a(s-fds=0, as s {m=0r=0 (9)
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Fi(@P)=F(@P), a8 sciz=0}, 50 €s, (10)

|f_f1[ﬂl '%Ghﬂ;mlflﬂr!: m=0: 1: (11)

where ds is the di fferential of length.
Proof, Let Ay(#) be the mterpolatmn basm funcﬂons c-nrrespondmg to nodes

'Y and set

then

_q(w)ﬁz f(m“})?«.;(m) . 7 (12)
In virtue of Ta,ylor g fﬂrmula we have

F@) = 1@)+Dif )+ [LADLFEO ),

‘=(n5{‘>4m) V, £9(1) =to+ (1—f}m“>.
By substituting it into (12) we ﬂbtam

o@) =3 @)+ Df @) +]. tﬁff(&‘”(t))dt)m (4.

where

We know from
@1,
' » e 'éﬂ:}‘)?ﬁq(m)=mj, j=1, 2,
that | . . . |
f(@) 9@ =3 [ DEFEO @) atn(a). (13)
From

| D*(2) | <Ok, |a|=m, m=0, 1,
and after some calculation'! we obtain the estimate

lf Gime<ORI™| f|a,,, m=0, 1. | (14)
Set

f(@)=g(@)+3] od(@), ' (15)
where 2 €, and |

Lf’l(-f (@) =g (m))dﬂ/ Lw:mh(w)ds, as 8] {# =0} =0,
-.0_. a8 3jc:{ﬁ1=0}.

(15) implies _
|, mi(@)ds=| a:f(@)ds

Therefore (8)— (10} hold. The polynomial f; determined by (8)— (10) i« nniquem

Hence it remaing to verify (11).
Let £= (&4, #2) be a point on the reference plane. We consiruct a reference

-y

triangle ¢={2CR% 2, tan1(fo/2) <@ <1—2s tan~*(p/2), 0<3<1/(2tan"2(,/
23y}, As inf 2,=0 and s;Cdade, if inf z; >0, let ¢,Ce be the standard triangle

correspondmg to 8,. The image of & 15 e, under a suitable rlgld body motion and

similarity transformation s—1(z) on plane. Set p—f—g, & (:1:) ='=4}D(l£!(£)) In virtue
of the trace theorem on Sobolev space H(e) we obtain P |
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(r I‘I'P(ﬂ?:l o) Idﬁ?i) ‘QG“'?’“

Then we have

( prarso(l o] p)
for the independent varmble . By Lemmas 2 and 8, ol

g ¥ ( LJ 5| (@) ds) -g(}(igf w1)° ( L‘l ?'?]ﬂdm—l—";qﬁdm)

< inf %(kﬂj ﬁil‘i’%lﬂ' d“-;""J‘. mﬁﬁﬂdﬁ);
F B 8] o Bt _F‘ _ .-{'. 3 .:"l

By (14) 2 3 ok sy
| mlo@ 1daﬁa(inf-w_a)"?h“lfl,a,a...
- . i P,
; j ml?u,(m)da:?fmfmi-{) ih
Hence L ig 3 P vE LA
ol <O(inte 1Sl s 1 1l
By Lemma 2, '

» [G¢|€Oh”2|f|2, (17)
If 111f zy =0 and ﬂﬁéﬁ let e,¢ be-the gtandard. tnﬂrigle corresponding to 3. By

Lﬂmmﬂ" 1, let &= ‘P(ﬂ?) be suc.h a I‘lgld body motion and mmllarlty transformation
{hiat the image of e is e,f and' " T8 . . .

O <0h e " (18)

e mi

Set 3(2) =@(P(z)). Ey rotating 5 around the zy-axis, we get a ‘threetdimensional
fegion ¢. In virtue of the.trate theorem on Soboley space H*(e) we obtain

(2of, s <200 ([ 90170627 5).

Then we have | . s R
f(.L; wip(&)ds ; h™ 420 (.k; ""‘leﬂ'?'g:- |2 da +h—ﬂL. migvf da;) )

for the independent yariable z. By (14) ' £

Us a:lrp(m)dsl QOthﬂ\ﬂﬂ -

.

By Lemma 1 L gk -;
Therefore (17) also holds. B s B P L NP P
Tt ig easy to prove B PR v, wogewipe 2l v ow ke
| ‘:&; [miﬂ__,%OhE 'ﬂ',_ | m =_'_0} 1_- _ e i : (19)

(A7), (19) tmply

- Qf}hﬂ*mlflﬂ" Hot g __ (20)
Then { 11) fﬂllows from (14), (15) » TR S |
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L

| As'inf-a:i}(), we have (18); on the other hand it ig easy to prove
| Ihlm,ﬁﬂ (sup 2, )”""hi‘“‘
By Lemma 2, (20) also holds. Them (11) fﬁl]ﬂWﬂ tr:}o Q.ED
Lemma 6. Iffe€Zi(e), then

(f— f:)/wluu..gchufla.+h||D‘“}f/w1nu,e), (@)

where f; 48 determimed by Lemma B, .
Proof. There is no harm in assuming fE&C?*(2), and f=0 near the z,—axis.
Then (13) holds. Let

pi() = [ 42 £ (60 (1) di(a). @
If &% € {z:=0}, by Lemma 4 1Y 2n . A s,
[srga<on 3 [ wf[dDreomias

logy =2

<OR* 2 J J (/% dtj @ tﬁ"ﬂlD“f@“’(t)) !”dtti‘m L

ln:l — g

Now we change the vasiaples, Tk £= (&, _§-_:) 6‘”@) Then da— dg/t” By noy‘mlng
-ﬂ&ﬁg&l Wwe geqi

lg| =2

[ artprda<on s rif'-*dt j | Do (E) | dé,
that is ik _ .
| | "|[¢¢/ﬂ?i'”u,a§0h|f|a.-- |
If 2 € {&1 =0}, we expand the differential operator in (22) and obtain

lo@) | < 4] (@l @) DA EO®) | +2] (@2 (@0 —an) D))

+ | (2 — ) DODF(£D (1)) |}t | (@) .
Since |M(z) | <1, #i? =0,

melq;fdm%'(jhgz J ml{j t]D“f({;'“}(t))]dt}ﬂdm

o =2
+Gh*J ._1“' 1] DO FEO(5)) |dt} dz=1I,+Ia.
The estimate of I4 is the same as before. For I, §1£ml yields =
1 1
Iﬂgghéj’ J'n m;ltﬂ ‘ D{U. ﬂ)f(gﬂ}(t) ) , ] dt dm‘gahl'[ﬂ dt J, §I1 [ D{ﬂ, ﬂ}f (g) I 3 dg-

Hence B LT
| 1/ 210, SO lflﬂu'“l'h“-pm’mf/% l0.e) e
By (13), (22) we obtain ; . |
| (f— g)/ﬂallu aﬂUﬁ(lfla.ﬁhl D2 f /) l0,6).

To get (21), we consider (15). By Lemma 4 and |A)<<1, as 29 & {o; =0},

A/ 2 ]0,6 =‘(L o1 A7 dm)ﬂﬂi‘(ﬂ E Rt dg )l_figh Opi/2.

By (17)

G leda/ o, SOB|S Faiyge
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As o€ {x;—=0} and ¢;=0, the above estimate also holds. Thereiore (21) bolds.

QED. | |
Lemma 7. IffE€Z*(e), then there exists a constant fo, such thai

| Folo.w<ORIfl1,e (23
 Proof. Ii mf m1>0 we take a constant fu, such that |
- fae=o.

Then™
; J (f-So)? ﬂmQGhHL_Wﬂ“dx.
‘By Lemma 2 ‘ | S e BT

I #:1( f— fo)? de< O Inf mi.hﬂj' |V F] ﬂdm%ﬂh”j 2| Vf|9d2,
B e , § ' @ . ,
i.e. (28) holds. If inf z;=0, we congider auxiliary triangled 31-{':5 ERY 0< &y < 2,

0<@a<1}, ta={zE ﬁ’ 0 < Ta < 24, O<m1 <:1} Under an appropriate affine transforma-
tion m==t,b(m) , the image of either &, or e, is e, and inequality (18) holds. Set f (z) =
f((2)), and t&ke a ¢pngtant fo, such that

L mi(f fu)d_m==0, =1 or 2,

Let &5, &g be the locus of &4, éa rot&ti-ng around the z,—axis, respectively. In virtue
of the estimate of interpolation operator on Sobolev spaces H(e), =1, 2%,

[ &:(F—foras<c|, &) 4f|2ai.

By noticing (18), we obtain (23) for variable z. QED.

We now verify two BabuSka-Brezzi conditions. One is rela.ted t0 regions £,
where the subscript k¥ will later be dropped for the sake of convenience.

Lemma B, Let Q be a conver regwn Then for any pC Mg (Q), there exisis a
uE Ho(Q2), such that |

| pi mnﬁof P(-a_a:; (wquy) 335 (ﬂ’lua) )dw,/ Ju| 20 (24)

Proof. By rotating € around the a,-axis, we get a three-dimensional region
{. Consider p as a function defined on 2. Then there exists v & (Hj (£2))8, such
that™!

div v=p,
|| @ <O|p| @)

and » only depends on =, .
As a function w1t.h independent variables @y, @1, ¥€ Ho(Q2) and

H‘HHH(nyﬁaﬂpﬂﬂ:ﬂ
Lot w€ Hpu(Q) be the projection of » defined by
a(v—w, 2) =0, Y€ Hyu(Q).
We take u € Hgn(82), such that
w(g®) =w(@?), i=1,2 3,
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T

on each element ¢; and
J zi(v—u)de=0 = (25)

a8 &1 {&1 =0} =@;
__ ulﬂgw!li 4
a8 8, {@; =0}, for &, ¢=1, 2, 8. For any ¢ € M, (2), by Green’s formula,

9 2 - |
J oy @)+, @) —sp)qda =3 asquenida—{ mpede,
where n is the unit entward normal vector of ¢. By (25) and Green’s formula,

Ejﬂwigu o g.[ﬁmlqw oo Jﬂ( 3ﬂ71 (ﬂ?1'!11)+ 3952 (mj"uﬂ))gdm jﬂﬂ?}_}?@'diﬁ.

L

Therefore

' J E(L {(2124) . : i (z119) — 24 p)q dm = 0.. | (26?

“We estimate u. Set

Then by (25) » | _
J z1(8—g,)ds=0. 2 | {27)
As mf 2z =0, if 8N {n:l—[}} ={ and mf m1=0 let the m1dp0int of 3 be 2P, g, is a
.quadra.tm polynomial on ¢ and vamshes at the end points of s;. By Lamma, 1 |

h2| e, (m‘”) |§OU miﬂ;.ds‘ (28)

In the same way as in proving Lemma B, by a.pplymg the irace theorem for the
three—dimensional region, we have

- (j @48 |d3) h“@ﬂ h"lLla;ﬂ Vs| ”dm+h"3Lm;|‘s Iﬂda:). | (29)
@— (@) yield ‘ r o
| | &4 miﬂ)] %G( J'm1|?3.“dw+h*“, 1!h.lrml|~.9"|""|:£m),; .(.30)
Af i]::f z;>>0, then by {3] |
|84 (aD) |2< OB~ hﬂj Ve [mm-] ]a]“dw) (31)
By Lemma 2, (30) also holds. Set ,= (e, ). Then e
| eacfie <P E | &a, (@) |2,
Tenlto<h 3 on@®) |2
From (30) we get h .

lesl 5o <O (| 211 V8|2 doe-h*[ 2] 82 ). (82)
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fra oo

As mf oy >0, (81) holds, but

on £ <830 02 3} 1on @) 1+ 2 Lo

By Lemma 2

| ea. i*,eiUh‘“(hﬂ Lwl |Va|?do+ J 1 |82 da:)_
Then for the same reason

ENE EﬁOh ”(h”jwﬂ?sﬁdm ja:l\slﬂdm),

Therefore (32) holds too. Summing 1nequahty (32) w1th resPeut t0 elements, we:

obtain
i s;.[]”mmﬁﬂ('[ﬂ w1 | Vel|?dao —I—h'ﬂjﬂ x| el “dem).
Using Aubin-Nitsche’s trick, we can prove

Laa_l g | dmgﬂhﬂjp zy| Ve |?da.

Hence g | ea] 2y <O e] aeo»-

But w is a projection; so |

: H I|H(m'§0|]‘vi|mm, ||WI|H~:HJ‘§0“‘”“H<H)
Therefore ] gy < | sl gy + |w “H{m‘io || v UH{HJQO [2]6, s
Taking g=p in (26) we obtain’

|2ll0, 0 <O p[3.0/ | ] 52>
- 0f p( oy (asn) + (o1 10) Jdo/ fulmar,

which is (24). QED.

Let M, be a finite dimensional sabspace of M,, such that if pC M,, then p i3 a.
constant on each region @, k=1, 2, ---. Set I"=|_] 8. The trace space of H, (§2) on

I is denoted by Ho(I"). Let ¥ be a finite dimensional subspace of Ho ("), such that.
u is a quadratic polynomial on each line segment of I" asuc Y.
Lemma 8. For any pE M,, there exists a u €Y, such that

[2l0.0<0 3 plasf,, auends) / July. (33)

Proof. The proof ig similar to that of Lemma 8. For P, We take a ¥, project it.
in space Ho(I") on ¥ and get w. Then take w€Y, such that = at the end points:
of each line segment ¢ on I, and -

J.wl(@—u)d8=0, ag 3ﬂ.{fv1=ﬂ}='@,

wu=w, a8 s {z;3=0}.
By Green’s formula

I mlu-ndsf=p|p,-.[ &y d,
e Ldx By
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Now p~u is a linear-operator from M, to Y. But the space is finite dimensional;

hence |2

Then we can get (88). QED.
Finally we obtain the error estimation for the appromma.te golution as follows:
- Theorem 2. Let u, p be the solution of prodlem (3), (4), and uiez (Q), U &
Z23(Q), pEZ*(Q), up, Dy be the solution of problem 6), (7. Then
lu—~wa] 5oy + [P—Pall 0.0 <Ok |ua]2, 0+ | D Pus/m1 ] 0.0+ |2 |2,0+ |?|1.a)
Proof. Let Va={u€ Hon(); b(u, ) =0, VpE€Mau(@)}. Then (7) implies €
Vs, and u, u satisfy equations (3) 3 (6) reslaeetwely Hence

. | ﬂ(un, 5) =F (), VoEV>.
By subtracting them we get

2 {u— - Up, v) —I—b(fv ») =0, V@JEV;.
Take any ¢ € My, (Q2). Then b(v, ¢)=0. We have
- e a(y, “U)-—ﬂr(’ﬂ'{—u s, v) +b(v, p— q)
Inequa.hty (5) a,nd the boundedness of a, b leads to
. do|v] H(ﬂ)’ga(nw_{_% “’h" Hfﬂ}”‘““mm‘f‘ lp—q ” Mo(2) | 2] me0y) 5

that i |9 20y <O ([ v4+u—tn] oy + 12— q H.{m) e
Taking any w&€V, and settmg y=u,—w, wWe have | .
|4 —va| 500y < HM -w|| H(ﬂ:-'l‘ ”‘UHH(D)‘\;O(LW ‘WH Hrn>+ 12— ¢ H.cﬂ)) -, (34_)

From equation (4,) & - i = o B
b(w, )=0 VqGMm.(Q), __ 5

__Aﬂcﬂrdmg to I..emmas B, B let uy;, uar be the interpolation funetions of Uy, Uy
respectively, and set ty = (th1r, Uar) - (8)—(10) imply

B @=b@ O .
Hence H:GV; By Ixammasﬁ G, g -t

“H‘HIHEII:JQO?@(IMHFQ’I‘ qu"ﬂ}U:l/mi"n.n'*" [U:a'ﬂ ﬂ) (35)

And by Lemma 7, there is an r€Z°(Q), which ig a nonsta.nt on eaoh element e,
such that o

bl
S o R ——

= mp-nin/| mds.
‘Then r+8€ Mo (£2). Lot ¢g=r+8, and then we ha_vq i
|- Q’Imnﬁn.‘? r

Set

To.a+ 1Blo,0<0p—10,0<Ch[p!1.0. (36)
By Sﬂbﬂtltlltlﬂ% (38), (36) inte (34), we obtain. « . ..

ju— uﬁ”th,'@Oh(‘uﬂﬂ n"‘”Dm'ﬂ}ih/%"u g+ |u2 ﬂ.n“i‘ IIP.:I..E) ¢ o« w he
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(37) is just the desired estimation for w—u,. We estimate P—m in the following.
Decompose p as p=p,+p,, where p, cM,,

| L T1dr=0, k=1 2 g
In the same way we decompose P» 88 Py= pu+ps. Then we take vE Ho(82), such
that oo, € Ho(2y), k=1, 2, ---. Now by Green’s formula .
b(v, p;) =b(v, pw) =0.
By equations (38), (6), s

5(v, ;v—ow) =a (wr—1, v).
Let M,,.n{geym; L z:qdw=0, k=1, 2, ,} then py€ My. We iake a g€ My,
Then | |
b(‘ﬂ, Q""‘Pm) ﬁﬂ(ﬂh'—t&, ‘U) '*i-'b('t?, Q_Pb)'

By Lemma 8 and taking an appropriate », we have
[g—pwallo,0,<C0B (0, ¢=2w)/ 12|20, <O(fu—w]z@y+ g — Do ]0,0.) - |

Hence
" W%“%Lﬂn.m‘go(uu"”hnﬂwﬂ“{“"Q"‘?b"ﬁ-ﬂ.)-
Taking ¢ as in (88), we have
'q _.pb ﬂﬂ. ﬂxgo}& IPb I lpﬂ';moh [p I.irﬂ.-n
Summing tham with regpect to k and noticing (37), we get -
HPb_Phhﬂo.n";Gh(I“ilﬂ.ﬂ"l‘ H-Dm’ﬂ}uu/-‘ﬂiﬂu.n“i* 'uﬂ‘ﬂ,ﬂ'l' IP 1,0). (38)
(38) is just the desired estimation for Py~ pw- Finally, we estimate p,— p.,. Taking-
V€ Hou(Q), by equations (3), (6) we have - -
b (v, Po— Don) =a(up—u, v) +& (v, Dos—Ps) -
The trace of » on I” is sti1l denoted by v. Then by Green’s formula we obtain

b(v, Dg— Pep) = ;.:2 (De— D) | n;-'Lﬂ 21 v+nds,

By Lemma 9 and taking an appropriate v, we have

Hf’a".Paan.ﬂ'Qb(’U.- Pn‘f’m)/uﬂ“rﬁ (@ (up—u, v) +5 (o, P&“‘Pb))/ﬂ”ﬂr-
For ¥€Y, we can always define its valne on each region {J; such that o€ H(Q)
and
1) 50y <O v]+.
Therefore

llprpm.ﬁu.-nﬁﬁ( tu— ] 5@y + | Do — D, 0) -
Substituting (87), (88) into it, we obtain
|20~ Perllo, 0 <OA (|12 ] 2,0+ DDy fsfo,0+F U2 a0+ |P]4.0).
QED. -

" Wu Xiao—nan has considered this problem'™ and obtained the error egtimation,
in a special case. * | |
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