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§ 1. Introduction

In solving a parabolio equation, a finite element method with variable mesh is
more officient than one with fixed mesh, if the space domain % be solved changes
with time, such ag the moving boundary problem, or if the peak value on the
curved surface of the solution in the space domain moves with time, such as the
speading of flame. In spite of the existence of this kind of methods™ %, however,!
there ig lack of its theoretical analysis; especially, there is hardly any proof of its
optimal order a,dcumcy." | | o .

Jamet has proved™ that a method proposed by himself and Bonnerct, where the
finite element is adopted in both space and fime, hag the optimal order acouracy. But
his proof was made under the special condition of one dimension and uniform meshes
and as a generalization of the Crank—Nicolson difference scheme, and is difficult to be
extended 1o finite elements of more general form. Jamet also proved the convergence
of their discontinumous finite element method and applied it to complex one-—
dimensional Stefan problem with many phagses. 1.i®? wrote the Stefan problem in
enthalpy form so as to make hig treatment of the moving boundary condition more
natural when using Jamet’s method. His method has strong adaptability and is fit
for complex problems, bub it requires many times the amount of caleulation and
storage than the continuous finite element method.

The purpose of this paper is to present a semi-digeretization finite element
method with grid moving continuously with time and to prove ifs optimal order
accuracy. A stable difference scheme with second—order accuracy is given for the
solution of an ordinary differential equation sysiem derived from our method.

§ 2. The Semi-—Discretization Finite Elements with Moving Grid

Congider solving the initial boundary value problem of second—order parabolic
equation:

L+ Iu=f, (@ 1€ 1
(F) il nmnalit)y #CDg 2)
w|s0,=0, €D, 0<I<T, (3)

where 9= {(z, i) |2 €Dy, 0KI<T} is a bounded simply connected domain in r-+1
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dimensional space, D; is a bounded simply connected domain in r—dimensional space
dependent on time, 8D, is the contour of D, in r—dimensional space, L is a self-
adjoint differential operator of second order.

To solve problem (P) using moving finite elements, suppose at any moment

i< [0, T'] there is a one t0 one mapping . —
. =X (’yr t) - (4‘)
t0 map the simply connected bounded domain @ in y-space into a simply connected
bounded domain .D; in space @, so that the cylinder domain Q% [0, T'] in (y, £)-
space can be mapped into the bounded domain 2 in (=, #)-space.

Then subdivide £ into finite elements, construct finite element basis functions
U1(y); Yaly), -, Ym(y), and denote by S,(Q2) the m-dimensional linear space
expanded from these basis functions. Af any moment € [0, T] , the finife elemeni
subdivision of £, the basis functions {;(¢)}=" and m~dimengional linear space
8,(Q) are transformed into the finite element subdivision of D;, the basis functions
{pi(x, D)}p and the m-dimensional linear space S,(D;) respectively, where the
bagis functions in the two spaces satisfy the following relation:

p(X @, 1), )=(y), i=1,2, -, m. (5)
Differentiate this equation by # | |

o, 0X . dps _ din
o ot ' ot di’

where % denotes dlﬁ'erantiahon for t under (y, t) ~spa,ee coordinate and —g— danotuas

d_lfferentla,tmn for £ under the (=, t)—ﬂpa.ce coordinate,
O, __( 3';!?: oP; Op, )
or 3:.'17-1 : 3:155
80X =( 0X; 00X, BXF,)'
ot o '’ ot '’ ot '
where = denotes the transpose of a vector or a matrix. Because () {in (y, £)-space
coordinate) is independent nf t, 830

o o 3X - :
;;i b 3’;: ot =0, ¢=1, 2, -, m, (6)
or, in mafrix form, . -
0 o oxX |
¥ > -l ol

WhBIE ?“(@1; Pa, **°y ?nl)fl o
Op1 Opy . Op1

e

Take the finite 9lement &pprﬂxlmata solutmn :
@G, =g, DU ~ 2' Uan(e, . - (®
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Apply the Galerkin method to find «"(a, ) € S,(D,) that sa,tlsﬁes the virtual work

equations

. i » ‘Pi)ﬂt +( \ &, ): ‘??i)ﬂr_ (f_, i}h)_pﬂ =1, &, v, M, 0<#<T.

On the other hand, from (8) and (6)” we have

ollw, 1) .. U G, d) o o oU [0X \° oo
g P, gt U= <at)anU

(Luh,- ‘.’Pi) p,= {(Lep"U, -‘Pi) ¢ R (L'PT: ?’i) U
Put it into (9) to ged t
T 3U oXT 3@3 ¥ — : ,. A : Wi
(lP » ‘pi)#r ai ( ot 3513 ? ‘?Ji) U+ (L;D 3 @"i)ﬂtg (f: ‘p‘)ﬂﬂ B 11 2: y T

(10)

w*(z, 0) =9% (2, 0)U(0) = RBae(z), =z€D,, - (11)
where R, ig the Riesz projection of elliptic operator L (when ¢=0) from H 1{Dy) 1o
;S’“DD ', that is Bat(2) € 8i{D,) satisfies the equation

(LRGEU(m): q;')ﬂi—‘ KLHO({E): ‘pi)ﬂuﬂ | =1: 2: “ery, M. | (12}

»

Chooge

From this, we can geb

(L™ (2, 02, @)U (0) = (Luo(2), @), 4=1, 2, « (13)
From (10) and (13), we get an ordinary diflerential equatmn system and ily
initial condition, which should be satisfled by U (¢), as follows:

M ‘Zf b, - 0 v W (14)
T(0) =0, (15)
where the elements of the m Xm matrices M, K and ¢) are calculated as:
M) = (P, 92), . N (16)
e T a:p; 9% v S
Qif (ﬁf (“‘pi} 3m 31‘; )D‘} o (17)
o Kuy(t)=(p, Los) o, g 2 (18)
m—dimensgional vectors U, and F are calculated as follows: L
Do K)o, 93, (19}
F=(J, ¢)n. | (20)

This is a first—order ordinary differential equation gystem, whose ‘coefficient, by
(16)—(20), is completely determined by the basis funotions {i;(y) }:Z" and mapping
X (g, t) (suppose L, us(a) and f(z, t) are known).. J;(y) is determined by the
finite element subdivision and the interpoliting function, and there are already
many results concerning its cholee, X (y, ¢) is determined by moving grid and this
will be discussed in Section 5.- In next section wé will disouss the estimation of the
error between the finite element approximate solution and the frue solution and in
the last section we will dlSGIlSS tha finite d.lﬂ’erence method for the ordinary equation
system and its stability.'” w8
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' §3. Error Estimation

The purpose of this section is to prove the following result if the variable
coefficiont differential operator L is continuously differentiable and satisfies the
uniform elliptic condition, mapping X (g, ) is smooth encugh and the conforming
element is adopted (i.e. JS';.(Q)CEIIC.Q)), then the finite element approximate

solution has an accuracy. with optimal order.
Obviously, the solution of (89) and (11) is identical with the solution of the

following Galerkin solution:

(%’ 'Uh>ﬂ + (Luh.? mh>ﬂt 2 (f:l Q‘;h) Dys Vo Sh('D#): Dgti‘;"T? (21)
T ’ pea Rouy (m) a | (22}

S0 we only have fo discuss the estimate of error hetween the approximate solution
from (21), (22) and the true solution of problem (P),

For this we suppose (H): The differential operator L= 2 @ 9 gsatisfies
§,i=1 351'1 351’5;
the uniform elliptic condition
- |
‘ ‘glﬁifgigf?’““ I g | ﬂ: V(ﬂ.‘?, t) E @: Vg e Rr: | (23)
where « is a pogitive congtant independent of (=, ¢) and &,
a;(z, 1) €0:(D), X(y, t)€0:(Q),
BX —— € 0,(8), 0T, | | : (24)
J 1 hag a uniform bcmﬁd on 2% [0, T], (25)
X \ . 3 . .
where J = det(ﬁ) is the determinant of transformation 2= X (g, 1),
the subdivision of  is regular. B (26)

For the sake of convenience, we denote by ¢ the constants only dependent on £,

o, | @il o, m&x\ X |0 Inax ng - and the upper bound of J~! but independent
wbaT Ca (i)

of & and ¢. To prove the main theoram of error estimate of thig section, we need the

following two lemmag:

Lemmal. If S,,(Q)CH;L(Q) mapping X (9, 1) €C1(Q% [0, T]), then the
solution u(z, t) of problem (P) also satisfies the viriual equation (21).

The proof is obvious. |

Lemma 2. . If 8,(Q) cH 1(2), By is the Riesz projective cperator from H, (Dy)
to 8,(D,) about ths elliptic differential operator L (corresponding io time t), that is,
for any u(w, 1) € H 1(D:), R.u i3 the solution of the following Qalerkin equation:

| (LR, )5, = (L, )5, VP ESY(Dy). @mn
If the suppositéon (H) ¢s satisfied, there is the estimate
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K gi g ﬁh)m

d
{1etom,+ hlelsn, + | T-BIGE]

} . *Uh” 1,0, (28}
1,Ds

where I is an identity operator and e= (I — R,)u.
Proof. From (27)

+h“ (I—Rt)-%;i

(L(u—Ru), v")p,=0, Vo*€8:(D;). (29)
Under y—coordinate (29) can be written as |
a(u— Ru) o\ 5
(B, BG), =0 VOES(@), (30)
where B=J ( gﬁ )A(%)T, the component of the m-dimensional matrix A4 is a;, the
Y 5 O J—gdet (22
gomponent of == ig B; , J =det ( 57 )
From (23)—(25), B satisfies the uniform elliptic condition
S BE=o/|E|3, VECR and (y, ) €QX [0, T1, (31)

where ¢ is a positive constant independent of ¢, ¢ and &.
Under the cuordina,te in y-gpace, differentiate (30) on ¢, and we gei

e d ov* de dB ot
(33; dt 27 w—Rw), B oy )u oy’ di oy )n' (82)
Becauge
du _ou  ou X
dt 3'5 " on o1’
‘E exigty obviously. The existence of — (Rfu) can be got through the limit of
difference quotient sequence and from 11]113 comed

2 (Ra) €8,(Q). (33)
Let wC H 1(2) and p & H, (£2) be the solutions of the following elliplic equations
respectively

ow av de dB ov ] ;
oy ’ ?@_)n (-ET@T’ dt 3y)a’ Vo€ H;(Q) )

and
(_CE B_) = (w, v)o, V'UEHi(Q) (34)"

Then it can easily be proved from (81) and (24), (25) that
|¢l20<ecilfio, o,

Lom(§ 38), (20 22 <ollclole

where ¢; and o; are constants independent of ¢ and 2. Thus
lwlo,a<<c[e|o,0,
© fwlio<e|e]1,q (35)
where ¢ i9 a congtani independent of ¢ and A. -

!
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e

(32) minug (34) (take v=1*) yields

3 [ du d o\
(ag[dt A W(R‘“)]’ e~ )n_o' |
Using the Nitsche technique, from (33) and (85) we get the Ls-estimate

du_,, _ G(By) {“'m_ _g (9 _
”dt " T | R‘( "”)

+h[ %’—-w — R,(-———— w)

where ¢ is a constant independent of ¢ and A.
Then from (85) and (36), we get

h d(w— R,'u)

0.0

1, n}’ 8]

- di

{“(I-—Rt) ﬂ +h

| ]o.0

dre
.ﬁ“?ﬁ‘

0. 8

1,0

(- Ry

& ”‘un,a'l-h”'ﬁﬂi,n}-
From (24), (25) and the above formula,

sl Ha-R gL,
+lelon+hlels.n- (37)
On the other hand, as
o _de ¢ DX
ot di gy O
0 . de X
e
3t ‘ ) (dt )u, (é}m ot "”h)ﬂ,' | (38)
Putting
e oX o oX 8 o0X
(3::'. ot ’ @k)u,=_(£" : )n, ( {uhﬁ _3_t.)11,
into (38) gives
de d ot o8X ¢ oX
(?‘:" ”h)n.. (d: ’”) +("" ai-, ot )1}#-{—(5’ g )D, .

2 00X

8 8X &, & OX, - oX >
where 5 5 E T Because from (24) and (25) we know = and 5 B

are bounded uniformly, so from (87) and (89), (28) can be got.
| Theorem 1. Suppose S4(Q)CH(Q) is @ finits element space with an accuracy
of order k satisfying au the conditions of supposition (H); besides, if for any

1c [0, T1, X€0,(Q), 2 eo.(a)(k;;z) the true sobution u€ Hyu(Dy), L€

Hiy(Dy).
Then the error betwesn ithe approwimate soluiion u*(w, t) and the true solution
u(w, t) of problem (P) én L—norm és
max |u—u'|; _B,ﬁo max |u| E.D:+J. H“HHLB.'*‘H H )dt }hﬂk; (40)
wigT Ky Dy

P o
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o

where ¢ 48 a constant ¢ndependent of A.
Proof. From (21) and Lamma 1 there is

(F5, ), + (L), n=0, VPESD.

Then s ; :
o(u'—Ru) s h o¢
( Y y U ) - (L('H» T 'Riu')? )ﬂ# (at y U ) ’ (4'1)
where e=u—RBu. Let v"=v"— R and put it into the above equality. We then get
ov" B - G g e ‘. N
(22 )+t (2, )5 o
yet
ld,, £ doiw s PaFE i dis odd
3 a7\ Vn 2 di E ?J)”“( dt ’ @J)u+_é"(w’ v )n
3“1} .h) t ( 3?;}" g oX i'l) 1 h kY dJ -1 )
(at’q’ﬂ,‘ 0w at””nfz( BT i
_{ ov" h)_l(h ool B N, 1 ,,dJ 3
(at"”m a\" ¥ Bg at)'z(’” dﬁJ)n,‘
From (24), (25) we.known that 36; 35;3 ; fﬂi and J-* are bounded uniformly, so
substituting that into (42) we get the following inequality

1 d O
2t {C@h: r‘]:'::\'Il)ﬂ:r} + (L,Uh’ wh)ﬂa (3? ’ "U) —[-G(Wh, 'vh)ﬂﬂ

where ¢ is a constant independent of £ and 2. From Lemma 2, the elliptic condition
(23) and the above inequality, the error estimate of differential inequality can be
ool |

é jﬁ{( : Wh)m}‘iﬂ{” |80, + A*| €] +“(I Rt)

D ’D'

+ 2

1 b2
;S : ) R
(.[ Rf)_d-t Hl,ﬂt - (@ ¢ U )ﬂt}-

Thus from the Gronwall inequality, for any & [0, 7] there ig

T
(v*, v*)p,<e"T(2", ‘l’h)ﬂ."!‘cﬂwj {]3”0 ng+hgu|€||1 D,

3

A

0: Dy

(1— R’ }di, (43)

t |1.D,

|-+ o\ du
*‘\I Rf)?{

Ag v*=0 on D,, so the firgt term on the right of the above inequality (o #*)p,=0.
From (43) and the triangle inequality .- .

"u uhﬂﬂiﬂt ”u Rtu‘ufﬂt_i— 'E‘Rfﬂ MUU Dy
we have

: ' T
Ju? 3,0, <2 u~ Res3.0,+ 2067 [ Lelt 0+ 2 e,

du |® }dz. f (44)

1. D,

2

10, Dy

- Rog
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.

Thus from % = —‘;f:— u zu 855 and the thEsﬂi'y of Soholev space interpolation the

estimate (40) can be got.

§ 4. Fully Discrete Scheme

This section discusses the finite difference solution of the initial value problem
of the ordinary equation (14)—(15) (obtained in -solving parabolic equation
problems (1)—(8) by the finite element method in Section 2). By meang of the
Crank-Nicolson scheme we geb the followmg system of differenceé equations

{ +1(Un+1 Un)+(K-Q) +1U+1ﬁ£ —FH,%Ai,., O<<n<<N -1, (45)
Uu—U(O) £ o .3 (46)

where At,=t,,.1—1,, to, ¥1, *+, iy are the digcrete points of the axis of time, #,=0,
tx=T. (+)» denotes the value of the function (+) at the moment #,,

'(-)nq_i s [(')H-F-i—{"(' )n] ;/2-
Lamma 8. If the positive sequence {2,}1=Y satisfies the @nﬂgualzty

ﬁ,,(l B:;At)%zﬂ_l(l—f— ﬁidt) n=1,2 . N, (47)
’ :
where At = z, B4 amd B_q are both positive constanis and mt@sfﬂ the wnequality
Buticl, i<l (48)

then, 2, (n=1, 2, «»+, N) mtm’sﬁﬂsﬂw wmequality
2@t T48 Ty, ' (42)
Proof. From (47) there is

1+ Byt 14 Byt \?
Hﬂ‘g 1—,82111(' ﬂn—.'I.g( ‘62.{]t) %05

'ﬂﬁ;ﬂfv

(14 B1di)?= (1+ B dt) &5 A < Mt

(1Bl (1 BA8Y T ™ o
So (49) is got.
If there exists a positive constant 8 mdependent of N. such thab
A <BA, O<n<N—1, (50)

where At—-%, then it can be proved that when 4¢ is small enough, the difference
scheme (46) i3 unconditionally stable:

Theorem 2. If 4, satisfies (50), At 4s small enough, when the righi-hand term
of the parabolic equation (1) f=0 (i.e. the right—hand term of the ordinary differential
equation system (14) F=0), the sclution U, of the finite difference schemes (45) has tle
estimaie

UrM U <cUIMoU,, 0O<a<N, (51)

where ¢ 48 a constant independent of b and N.



94 JOURNAL OF COMPUTATIONAL MATHEMATICS - Yol. 4

B T i oy

Proof. Multiplying both sides of the differenee scheme (45) with (UptUosa)*
and rearranging yield (suppose ¥=0)

:+1Mn+1Un+1 T U:MHUH—- -]:‘ U;:F+1(Mn+1— M;)Uﬂ-!-i

-1 oxst,s- 20, +l U7, K 1y U,y i

_% g QIH--E- "} dty=0. | (62)

For any »*E€8x(D,), there is | _
3’!.11' . 3.I 9 =i’ n_?_, aX l 5

'( 3:!: at £ v D, 2 (ru a‘m 3t ¥ 'Uh)ﬂt QB(‘H s 'Uh)[}', (53)

where ¢ is & constant independent of A and ¢. From the above equality and the
definitions of M and Q (see (168) and (17)) we have

~UT 6 U 1 <BUsuM "+1U"+1+UTM U“) . (54)

n+-2- n+-2- N+
where 8’ is a positive constant independent of » and N.
From definition (16) of M (%), for any v"=¢"V €8,(£2) there ig

Vo Muys— MV = (2, *)p,  — (@, ®)p,,= (¢, *(Jn1—Ja))a.  (55)

From (24) J is contifinously differentiable for ¢ and from (25) J~! is uniformly
bounded. So there are -

I JH+1 feg Jn 1 < ﬁ”‘dtn'}-n (56)

l Jﬂ-[-*i = Jﬂ | < ﬁr;dthn+ir (57)

where B'" is a positive constant independent of n, N and A,
From (55), (58) and (57), we get the estimate.

and

ﬂ+1(Mﬂ+1_Mﬁ>Un+1§B”U +1Mn+1Un+1dtn: (58)
Ui(Mpp1— MU <B"UMU . A, (59)
And from (18) and the elliptic condition (23) of L, we geb
U; 1K 10,1 >0 (60)
.3

Substitute (54), (58), (59) and (60) into (52), and we have
(1= Bt U1 MoaUnsr < (U4 Bt )UMU,, 0<a<N-1, (61)
where S ==—1-(;8"—l— 8" is independent of N and . If 4 is small enough such that
BRAL < %—, then from (50) and (61), (51) can be got by Lemma 2, where ¢ i3 a

constant independent of N and A.
We can further prove: The finite element difference scheme (45) not only is
unconditionally stable but also has an optimal order error estimate in L, norm.

§ 5. Determination of Mapping X(y, £)

- Up to now, the whole calculation of the finite element is awaifing the
determination of the mapping X (y, £). Bui the choice of X (v, {) is a complex



No.1 A FE METHOD OF SEMI-DISCRETIZATION WITH MOVING GRID 95

problem. It is connected with the physical problem itself, and practical experience
plays an important role in a good choice of mapping X (g, #).

LI'his section only discusses how to choose the mapping X (¥, ) after the
complete determination of the finite element nodes at any time.

We firgt fake the one—dimengional case. At this moment as the mapping X (y, t)
has been completely defined at nodes, only the expression of X (v, #) in the domain
between the two nodes has to be given. Suppose

=X (9, 1), 4=1,2 (62)

is the transformaition expression of the nodes, where o<, ¥:1<<¢s. # and ¢ in the
domain between (@, @2) and (¥, ¥5) are expressed by parameter A ag

{ y={1—A)ys+Ays,
z=(1—A)zy+ Az,.
Then we egtablish from (63) one-to-one correspondence relation in the domain
between oy <o<w»p and ¥, <y<ya. If (62) is known, the fransformation X (y, ¢) and
its derivatives with-any order in domain [y, #s] can be completely defined from
(63); thus the calculation may proceed.

In general, the space variable is of r (#>>1) dimendions, and the element is
simplex. If atall vertexes transformation

g ni=X (1, 1), =1, 2,+--, r+1 (64)
is given, then # and ¢ in the simplex can be expressed by the area coordinates

respectively

(63)

r+1
Y- i=21 Ay,
r+1 r+1 (65}

4 P Emh E?ﬁ;ﬂl} h}O-

=1
The one—to—one correspondence of the mapping =X (y, ¢) between simplexes with
vertexes {w;}i=1*" and {y}i=I*! respectively can be built up from (65); thus, the
mapping X (y, ¢) is completely defined and the calculation can go on,

Obviously for elements of other shape if the transformation o= X (g, ¢) of all
nodes is known, this finite element parametric representation can also be used to
build the one-to—one correspondence relation of mapping X (g, ¢) in elements. Thus
X (y, t) is completely defined.,

¢ $
1 ]
Tr-——-—- 1
i ]
7 0x[0, 7]
‘ __l «Dt # ----- Q
2= X{(y, t)
.F J = ; S a7 ro—tie= - s y
[0 = E
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| §G Concluding Remarks

The finite element method with moving grid and its error estimation presented

here are only confined on the special parabolio equation and the first kind
homogeneous boundary value condition merely for the convenience und the
distinctness of the expogition and the whole analysis is still effective for general
parabolic equations and nonhomogeneous boundary conditions of other kinds.
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