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Abstract

An algorithm combining the MG method with two types of extrapolation is given for mlﬂg
finite clement equations with any initial triangulation. A high order approximation to the solution of

PDEs ean be obtained at the cost of order O(N) of computational work.

’ - § 1. Introduction

'

Two types of extrapolation are suggested in [1] for solving boundary value
‘problems by successively refining meshes:
Type.1 for gaining a higher order approximation o the golution of PDis;
Type 2 for gaining a good initial approximation in iteration. -
These extrapolations are based theoretically upon the asymptotic expansion
P et - €1h™ - eoh™ e, Ol <ogToes, (1)
where , ¥ represent the discrete solution and the interpolation fanction of the
solution of PDEs for linear finite element. It has been known that'®>
W (2) = (3) +w (@) h*+O0 (R 1n k) (2)
holds if the solution of PDEs is smooth enough. The numerical experiments and
some theoretical analysis in [4] show that asymptotic expansions also hold for less
regular problems. In order to make the exirapolation of type 1 effective, the
discrete solution must be aceurate enough and this should cost an order of
O(N1nN) of computational work for ordinary MG methods (N the number of
nodes). Now an algorithm combining the MG method with type 2 extrapolation is
given and its order of computational work is reduoed %0 O(N).
When we finished the paper, we learned that some authors'® also worked on
the same topio. Bus their results are limited to special regular domains and, special
initial partition.

§ 2. Algorithm and Analysis
Let Q be a plane polygon. A series of nested triangulations of 2 are produced
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a8 Tollows: An initial partition 4, divides @ into a fow large  triangles. Then,
successive midpoin$ refinements produce a series of partitions Ay, 4, +++, 4, --» with

corresponding mesh sizes kg, A1, *:-, Ay, --- and ky_;=2h,. A series of linear finite
element equations,

- Azttyy= S __ (3)
corresponding to the partition 4,, are solved one by ome. Now, an algorithm is
given as follows.

1. For £=0, 1, solve up=A5f0, us=A7f, direotly.
2. For k>2, take the initial approximation

ug= 11 (aiﬂ—ﬂ; ';;Ic—i) (4)
and then perform MG iferation s times to obtain .

3. If u, is acourate enough according o some stopping criteria such as given in
[1], stop and go fo do the type 1 extrapolation; otherwise go to step 2.
~ The MG algorithm i referred to [7]. This paper mainly deals with the initial
choice of (4).

Theorem. Let constanis ¢y and ¢y satisfy, for k=2, 8, -

3 ppssp<l, | | (5)
ﬂﬂh"'ﬂ (Un_g, Ug-1) HL,{.:,%cih“, a>0, (6)

IH -(ﬂk-m Uy.y) — I (‘Era-a: 'Ek-—l) " L) |
<0a(§ -2~ Up_a taer + [ Up—1~ U1 [ 2. c0)) » (7)

~ Oonstant g, stands for the convergence factor of the MG iteration on 4, in the sense of
Lg-norm. Then, when r makes 20407 <1,

"uk"ikﬂh(ﬂlgﬂ(P)hnj k=ﬂ: 1: 2: (8)

holds with ¢(p) =010"/ {1 —cgp"). |

Proof. By induetion. For j=0, 1, u;= Uy and (8) ig trivial. Suppose now (8) is
true for j<<k—1; then, for j=£%,

ﬂiﬁm—' 'Hk” Ly= || {1 (H‘k—ﬂ: '!-“51.;—1) o Ui " Ly D)

< H(“‘k-ﬂ: uia-l) — Uy " L (L) -+ "H (uk—ﬂ: ufﬂ:-—l) o H(ﬁk-ﬂg Ekul) HLt{nl
<eih*+0q( ”uﬁ:—ﬂ - ’Ek—ﬂ " Lyt ”%:;—1 o ’Ek-l “ L))
< (e3+2¢20(p) ) 42,

4 — ]| zac0y << 0" 148 — | £y <" 1+ 2090 (p) ) h* = (o) R

The proof is thus completed. |
The norm in the above theorem can be replaced by other norms as long as the

corresponding (B), (6) and (7) hold.

§ 3. The Choice of Initial Appmximﬁ.tiom
Suppose that |
o "(z) w(z) +w(z)h”+0(h"'), HEQ
‘mih 'r>2 We ahow how to define I (ay_s, u5_1) smeh tha.t (6) and (7) hold for a>>2.
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Mesh sizes of 4y _a, dy-1 and 4y are 4h, 2k and h; correspondingly, interpolation

funoctions of % are denoted by u*!, «*' and . Thus,
w(2) =ut(2) +16w(2) AP+ O (A7),
uP(z) =u? (2) +4w () A2 +0O(h").

From now on 4; also represents the set of nodes of the k—th partition.

Fig, 1 Typical element I' of 4,

1. For 2€ y_o, u* (2) =u? (z) =u! (z) =u(z), it is easy to see that

iy (2) = -i— Un_y (2) — —1— uy_a(2) +O(R7).

So, for 2= A4;, A, and Az in Fig. 1, define

I (g, Up-y) (2) =';i- Up—1(2) — %" Up—3(2) -

2. Forzc Ak_i\.d;;_g, sSay E——"Bi, '
u™(By) =5 (u(4s) +u(4a)) +16w(B)R+O(),

u(By) =u(B1) +4w (B )W +0(R"),
w(By) =u(By) +w(B)h2+0(h"),
combined with

LAl _‘?’j_ uP(A) — % u(4,) +0(h)
lead to

(Bt (Br) - [ (4s) —u™(4s) +u(4g) —u(As)] +O (7).

S0, define

(9)

.U (‘Lﬂ;,;_g 3 H];_i) (B;L) = Un_1 (.B:L) - -18; ['urir.-i (-A-B) — Ux_3 (AH) -+ Ux—1 (AE) = Ug—2 (-A»B)]

and similarly for z=B,, B;.

8. For z€ 4\ 4y_1, i.0. 2=cy, 02, =*+, Co, take % ag the quadratio interpolation
function of ¥ with nodes Ay, 4., Ay, By, Ba and B;. Then the values of « ab ¢y, ¢a, -,

¢y can be expressed as:
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On 7, ’

'iu—&"ﬁ.mgﬂhﬂ
and for z=e¢y, o5, -+, oq '
u?(2) =t (z) +w(2) B2+ 0 (h*),

u™(2) =i (z) + 4w (2) R*4+0(h*), a=min (v, 8)
hold. Therefore

() =2 6e) + 3w (z) + O ().
In the expression of 4(z), combining (9) and
% (Ay) =u®(A4y) +%—E’Mﬂ (4i) —u(4) +u™(4,) ~u™(4,)] +0GT),

'2-", jnl 2 3 Bi=ﬁ53_, BE=A31, .Ba='.d‘5l.15, IlI'..I.O)

one can get the approximation o «*(2) with order O(h“)
In detail, for ey, 6., €4, cq, Cs, Co, sajr C1,

uh(01) =55 u*(dy) — u"' (A1) + u%(Bg) g5 = ()

1 ik o5
Ho, define
19 11
II (ui-—ﬂ: u'k—i) (01) = 35 U1 (-A-:I.) 16 Uy-a (-A-i) + 16 Ug.1 (Ba)

312 U1 (4s) — 'ui:—ﬂ (4as).

Eimﬂarly, for C4; O, 07, 8AY Oy,
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u*(cy) = i u(A4y) — _IF w*(Ay) i % (™ (As) + uﬁucﬁa) )

S5 (9 (4s) +U(4)) +5 (W™ (Br) +u™(Br)) + O (%)
and thus define .

IT (g, taz) (C4) =-—§" Up—1 (Ay) — 3 Uy (41) — 6 ——(uy_1(4a) +uk;-1 (4s))

16
= % (-3 (Az) +up—a(43s)) +'%— (t-1(Ba) +x—1(Bs) )

Defining II (-, %_1) as above, we get
|t — I (%3_0, Up.1) ||L.cn;‘%'_(7h", a=min(z, 3).

Now we come t0 show that the interpolation defined above also satigfies (7). Let
J be a linear function on 7" with values fi1, fa and f; at three vertices, then

1 1y = 228D (72 3t f2t it Faort Fof )

holds and when f is a piecéwise linear funection on 4,

; ﬂ'hz ﬁ(z)ﬁllfﬂa.;,m%-* ”’kg J2(2)

2edx

hold where o}, o3 are the maximal and sithimal ares among all elements and N, Ny

are the maximal and minimal value among numbers of elements around each node of

4dy. For midpoint refinement, o3/cy=0a4/0y, Ni=max (6 Ny), N u=mﬂx(5 No).
Because of the 1111&3-1'1133?'- of I 4 den{}tmg O1=Upy_q~ 'Hr;;,_i and 6ﬂ=uk_g'-ﬂ'u_g, we have

HH (uk-ﬂ: un:-i) -1 (Ek-—ﬂ :‘Ek-i) H%.{m

= 1 @y, 8) [fuw < Tt 01 3 [ (3s, 8 ()"

<ON,o [ > Bﬂ(ﬁ)-l- > 0:(2)]

< & di-1 Zgedr.s
N el 1 1
<0 N; o3 [ o182 ullm |
o o[ 1 gsqe . 1 |
NZ ﬂ'k[ don 81| Zycn - 160+ Joa] Zuo ]

<O (N3, No, 0, o) (| ﬂk—i— Uyoz] zioy t ftl_a— Un—afl 1x0y) %

where O stands for a general congtant. This leads to (7).

Thus, the algﬂnthm defined in § 2 with I (Uy—a, Up—1) defined in this section can
give approximations with acouraocy O(A*) to solutions of (8) with O(N) cost. By
type 1 extrapelation from these data, an approximation fo the solution of PDEs with
erder O(h*) can be obtained where a=min(z, 8) >2.
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