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A SEMILINEAR FINITE ELEMENT METHOD*

SuN J1ia-cHANG (FFEie)
(Computing Center, Academia Sinica, Beijing, Ching)

Abstract

In the Ritz-Galerkin method the linear subspace of the trial solution is extended to a closed
subset. SBome results, such as orthogonalization and minimum property of the error funciion, are
obtained. A second order scheme is developed for solving & linear singular perturbation elliptic problem
and error estimates are given for a uniform mesh size. Numerical results for linear and semilinear
singular perturbation problems are included.

§ 1. Introduction

The development of finite eloment methods has been successful in various
fields. From & mathematical point of view, the methods are an extension of the
Rayleigh-Rifz—(falerkin technique ([1], [11]—/[18]). Usnal finite element schemes,
choosing piecewise polynomials as irial functions, are very efficient when there are
no steep gradienis in the true solution. Otherwise, poor results might ocour. In
order t0 get accurate numerical data, one may use the adaptive mesh technique
or a higher precision scheme such as A-version or p—version™, Besides usual
polynomials, rational elements™™ and exponential elements" have been introduced
10 enrich the trial subspace to reduce a number of parameters for a given precision.
One thing in common among these techniques is that they are all reduced 10 &
discrete linear system if the original differential equation is linear.

This paper proposes finite element methods of Ritz and Galerkin types for
linear elliptic equations where the shape functions depend nonlinearly on a finite
set of parameters. So the arising minimization problem is solved on a subsed
instead of a linear subspace (as it would be the cagse for piecewise linear shape
functions). This approach allows for instance the use of exponential shape
functions with the parameters occurring in the exponent. So in this case one
probably obtaing & significantly better approximation which justifies the additional
labonr. |

In Sections 2 and 3, we generalize respectively the Rifz and the Galerkin
methods from linear trial subspaces t0 subsets, and derive some results such as
orthogonalization and error estimates. In Section 4, the semilinear finite element
technique ig applied to solve singular perturbation problems in one dimension:
—eu'' +pu'+qu=Ff, u(0) =u(1) =0, which bas been studied by various anthors™
Our analysis shows an improvement over the scheme of using the piscewise
linear subspace by one higher order of precision. Moreover, the constraint of mesh
gize h ig relaxed from O(e?) to O(s). The numerical tests including a linear and a
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semilinear fest singular perturbation problems are given in Section 5. Computa-
tional results show good agreement with the above theoretical analysis.
Qome Tesearch resulis on the same topic in two—dimensions will be reported

separately®,

§ 2. A Ritz Method on Subsets

First we consider a self-adjoint elliptic linear differential equation
Lu=f, 1)
Suppose a(u, v) =(Lu, ») is a positive gquadratic form in a real Hilbert space H
with an inner product (», ») and a norm [ «|:
Oslu|?<a(u, v)<O;|u|® forallucH, (2)
where O, and 0. are positive constants. u is defined as a weak solution of (1) if it
satisties

a(u, v)=(f, ») forall vCH. (3)

It is well-known that u is a weak solution of (1) if and only if it is the unique
minimum solution of & quadratic functional Z, i.e.,

I(w)=inf I(0) =int {a(, v)=2(f, 0)}. (4)

In dealing with the variational problem (4), a well-known discretization is
nsed $o replace the space H with a sequence of finite-dimensional subspaces V*
contained in H such that

I(u*) =inf I(v),

vEVH
which is equivalent to the following weak solntion
a(u?, v*)=(f, »*) for all 2*CV™. (5)
Now we try to replace H in (4) with a sequence of closed subsets §* with the
same number of finite-dimensional parameters. Let T be a one—to—one differentiable
map™® from an open convex set '} of V* onto §*: TVi=8" In particular, 77"=7 if

T is a linear map.
Clonsider a Testricted variational problem on the closed subset S*:

I (u,) = infI(v). (6)

pE R

Since S* is closed, there exists a solution of (6) in §*. If u, minimizes I over S*,
u,=Tw, then for any n&EV; and small a, I () <I{T(w+an)) as wtanCVi. Let
T (w+an) =Tw+alPn+x(a), where T’ ig positively homogeneous and

x(a) =T (w+an) —Tw—aoTn.

We see that
I(T(w+om)) =I(u) +2ala(u, Tn)—(f, Tm)]+2[a(u, x(a)) = (f, #())]
+a2a(Tn, Tn) +2aa(Ty, x(e)) +a(x(e), x(a))=I(a).
For u, to minimize I over 8% it requires thak 1111;1 I’'(a)=0. Observing that

%{(0)=0, ' (0)=T" (T *u,) —T)mn, and
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0=I"(a) [ano=2{a (s, T0) —(f, Tn) +a(us, %' (0))—(f, #'(0))},

we have

a(us, T"(T ug)n) =(f, (T *u,)n) for all nC 2. (1

‘Therefore, we have the following theorem:

Theorem 1. If (i) V* is a subspace of H, (ii) 8* is a closed subset of H, (iii)
T' is a one—to—one positively homogeneous and di ferentiable map from an open convew sef
Viof V* onto 8* TV:=8" then there exists ¢ solution us of (6) so that (7) holds.

The above theorem shows that the nonlinear system (7) has at least one solution
which minimizes the variational problem (6). Usually, it does not mean the
‘equivalence of (6) and (7). In general, the uniqueness of the solution cannot be
ensured. However, we have the following conclusion.
| Theorem 2. If Vi contains u* which is de fined by (B), then for the map T
whiok s sufficiently close to @ linear map, i.e., |T ~T | i3 sufficiently small in the sense
that for a fized >0, (X =T (T ) )v| <e, Yu, vEVYE, the nonlinear system (7) has a
untque solution which minimizes the variationol problem (6).

Proof. In fact, (T) can be rewritten as

a(t, 9°) = (f, v") +Q(u, v*),
where Q(y, **) =a(u,, [I-—T" (T"iu,)] vy —(f, [L — I (T ) ]0™).
Since there exisis a unique solution in (5), the above system of equations must
also have a unique solution if |7'—7"| is sufficiently small.

Now we suppose that the generalized coordinates (real parameters) of the

subset S* are ¢, +-, gq,. Then for a minimum solution in S* the first—variational
equations of I (w) must be eliminated

- gi ~a(w, 2;’ (7 2—;)=9 for =1, m. (8)
The determinant of the second—variational matrix at the solution point ig positive
det( i )}0. | (9)
0¢:99;
Let {B,} be a basis, Then for each we 8§ *
=1 Py o - ' Bw'
w==T" o120 i EE—Bi l 39'; f
where T‘“ifw-=$ q:B;,  wt=w—T"1y,

Substituting the above formulas into (8) yields
;ﬂ(ﬂi: B;)q;=(f, B)+Gi(g),

where G;=(f, %i;:)—m(w*, gz:) ?g,-w(B,, ?;:)

Hence, the equations of the weak solution in subsets differ from thogse in
subspaces only by the last extra term which tends $0 zero when the subsed S* tends
to a subspace, i.e. for a fined s>>0, there exists ho>0, for all A<ho, such that
[u—*| <s, VP E S P CYR. Also, system (8) can be written ag

a(w, B) =(f, B)+G:(q), (10)
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where G‘f=(f, 3;;:) m(w, %15)

Hence, for each »€&€V™ ignoring the eXira terms, we get an approximate
equation

a(uy, v)=(f, v) for all v €EV™. (11).

The w in (10) corresponds to the unique solution of the variational problem

(6) for the positive quadratic form a(u, ) restricted in the subset §*. Owing to the

continuity of solutions with the system, a golution u, of system (11) in Sh g1ill

exists, provided the distance between PP and S i.e. sup |u*—o*], is sufficiently
: HIEHL
v

small. Geometrically, it is obvious. Expressions (8) and (9) imply that a hyper-
surface in » dimensions (qy, -+, ¢), 2= (81/8¢;), is separated by a hyperplane z=0
and they have only one intersection point. Even if this hypersurface is moved, there
still exists a unique intersection point if the distance of moving is sufficiently small.

There is another different approximation version from (11) which requires the
finding of a u, € S* such that '

a (s, us— V") = (f, u,— ") for all ®*€¥™" (12)
Suppose u, is the unique solution of (12). From (8), for any o* in V7, a(w,
ty— ") = ( f, us—2"). Subtracting (12) from the above formula leads to @(1—Us,
at,—v*) =0, It also implies that
a(u—v*, u—1*) =a(u—1ty, U—1u,) +a(V"—u, P — ) «
Using (2), for any +* in V*, we find
Oallu—1us | 2 <a(u—thy, u—1ty) <a(u—12 u—M <Oy [u—2*|.
Similar formulas exist for (11). Thus, we have proved the following

fandamental theorem of the Ritz method on subsets which is an extension of
Theorem 1.1 in [13] for subspaces.
Theorem 3. Suppose u, is the unique solution of (12) or (11) in @ closed subset
S*. Then it satisfies the following properiies:
(a) Minimizaiion
& (16— s, U—1u,) = inf a(u—2", u—2"),

v TH
or ﬂ(u""ﬂa: ‘u"_u:) =ﬂ-?él£iﬁ(u_“s'—1’hs u-—u#-—qﬂ),
and
| <O inf |u—2*], (13)
or
ju—ul < 102, fu—v,—, (14)

where O ts a constant.
(b) Orthogonalizalion

@ (14—, Us—V*) =0 for all o* in V3,

a(u—u,, v*)=0 for all v* in V™. (15)

As a system for the weak solution, (11) is more practical than (12). And the
' difforence between them is small if the subset is “not far” from a subspace in some
gense, -

or
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§ 3. A Galerkin Method on a Closed Nonlinear Subset

Now we extend the analysis of the Ritz method to the Galerkin method. Assume
that the operator L in (1) is not self-adjoint in which derivatives of odd order spoil
tho self-adjointness of an elliptic equation and the associated quadratic funotional
I(v) defined in (4) is not positive definite. The problem now is to find & stationary
point instead of a minimum of I (v).

Theorem 4™'. Suppose that H, and Hy are two real Hilbert spaces with inner
products (x, #)y, and (», *)g,, respectively, and that ( f, @) 48 a eontinuous linear
Junotional on H, and a(u, v) = (Lu, v)u, a bilinear Jorm with two inequalilies

(1) |a(u, v) | <Ci|t|a,|o]z, for all u€ H, and V€ Ha,
where Ui{m. |
(i) la(u, w) | >0aull,, 0.0 for all w€ H,.

Then there emists one and only one weak solution u, o f the funectional equation Lu=f
such that

aug, v)=(f, ») forallvcH,. (16)

Galerkin’s method is a natural discretization of weak form. In general, it
involves two families of functions: a subspace §* of the solution. space (or trial
space) Hy and a subspace 7 of the test space H, Then the Galerkin solution
satisiying (11) is an element of S*. Let {s,} be a basis for §* and {v;} a basis for V',
The solution u"=JZ q,8; satisfies a linear system '

Ag=d, (17)

where A= (a(s, v;)) and d=(f, v,). If A1 exists, there is a unigue solution «* of
(11). However, if there is an odd—derivative term of bilinear form with gignificant
size, the wsual Galerkin method is unsatisfactory in general.

Suppose that 8*€ H, is a closed subset with the same number of freedoms as V*
and that there exists an element w*&8” satisfying (11). Following a similar
derivation in Section 2, we reach the following conclusion parallel 0 Theorem 3:

Theorem B. Assume that gl conditions in Theorem 4 hold and let u* be @
sobution of (11) in a closed subset S*. Then (1B) s still true. Moreover, (14) can be
expressed by |

|u—[n <Gt inf lu—vP—w]a, (18)

Let u; denote an interpolation of any w€ Hy in the subspace V. For a,ny-
‘MJESI',

a(u—ut, u~u*) =a(u—u?, u—u;) +a(u—ut, u;—ub).
By (15) we have

a(u—u, u;—u) =a(u—ut, (uy—u¥) — (u;—u?);),
or

a(u—ut, u;—u*) =a(u—ut (—2") — (u—u™)) —a(u—u?, (w—uy) —(u—uy);),
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An application of the inequalities of Theorem 4 gives
Ol u— |5, <O v — 0| | o — s+ | (g —2") — (s =81l
Therefore, we have shown the following erxror egtimate.
Corollary 6. Let u; denote an interpolation of any w€.H; in the subspace
7%, Then

Ju— <2 {1 (u =) — (=il + fod [l

+ || (w—us) — (w—u2) 1|z} (19)
and

H““““UH“‘Q%{H%*%#“&"‘ | (u—2u?) — (u—u*)1] m,

+ | (u—un) — (u—2uam) | mt- (20)
The bounds (19)—(20) will play 2 central role in error analysis. It is clear

that the subset S* may be so chosen as to tend 10 a denumerable dense set ag » tends
o0 zero in the true solution space Hi, as 7» does in H,. In this cage, the limiting
behaviors of the error in energy norm depends mainly on the approximation of the
saubset S* as A—>0.

For a non selfsadjoint a(w, »), the existence of the stationary point in the
whole space Hy i§ ensured by Theorem 4. Hence, from geometric intuifion, there
oxista at least one stationary point in the sense of (11) for sufficiently small A.
When the subspace S* coincides with the subspace ¥*, we assume that there exists a
unique stationary point of (11). Hence, the unique stationary point still exists
provided the subset 8" is “very close” 1o the subspace F*. In general, we have the
following theorem:

Theorem 7. Suppoese there exists a subspace SL* with & basis {8;} in which the
linear system (11) has @ unique solution. Let T bs & map from the subset S8° to the
subspace SL* such that for a basis {v;} of the test subspace V",

o(A-XT (@) <4, | (21)
where the notation o denotes the speciral radius of @ matriw, A is defined in (17}, and
J(@) is a Jacobi matriz of the vector G, defined by

Q= (a(u*—Tu", »;)).
Then, there also exists a unique sobution of the nonlinear system-(11) on the subset 8*.
Proof. Let Tu“-——-? ¢,5. Since a(uwt, v;) =a(Tu’, v;) +a(ut—Tut, v;), from the
orthogonalization property of (15), (11) becomes ?} a(s;, v;) = (f, v;) +Gy, it can be

written in matrix form as

Ag=d+G(q). | (22)
The system of equations can be solved by a “simple” iterative procedure
Ag®=d,
Ag®=d+G (g% ™), (23)

which is a contraction map if condition (21) ig satisfied. Q.E.D.
Remark. (22) is very useful not only for the proof of the existence, but also

for the computation of the solution.
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§ 4. An Application to a Singular Perturbation
Boundary Value Problem

Consider the following boundary value problem
L= —su" +p(w)u' +g(x)u=f(2), (24)
where ¢ is a small positive parameter and p(s), ¢(s) and f(z) are so smooth that
their derivatives including the second-order one are uniformly bounded for all o
in [0, 1]. In addition, p(s)=p*>0, ¢(z) >max (0, p'(z)) on [0, 1].
Let H,, be a Sobolev space of order m with the norm such that

ula={], 2 (Duy2aa}”
and a(u, v) be the non-symmetric bilinear form
a(u, v) = J‘: {ew' v +-pu'v 4+ quolda. (25)
With these notations the weak solution of (24) can be stated as: Find w& H? [0, 1]

such that a'

a(u, v)=(f, v) forall o€ HI[O, 1], (26)
where

100, 1] ={v|v € H4[0, 1] and v(0) =»(1) =0},
Existence and uniqueness of the solutions to (26) follow from Theorem 4 by

the following lemma:
Lemma 8%, Threre exists a positive constant C wndependent of & such that

a(u, v) | <Olulsq|v]s forall u, »€ H?,
a(, v) | <Ol u|y,e|v]1,51/. forall u, v HY,

and
|a(u, u) | >0 u|},. forall uc HY,

Y,

twhere . .
fa
L (ev?+u?) do } ; (27)

)1, =

F 1
ﬂu"j.ilgiflu J"j

( gy’ +iuﬂ)dm}m. (28)

0 &

Now we apply the generalized Galerkin method described in Section 3 to solve
problem (24). Let 4, denote a partition of the interval [0, 1] into N subintervals
[#5-1, 4], §=1, 2, ---, N, with 2y=0, oy=1. For convenience, first we only consider
a uniform mesh: o, —~a,;_y=h, j=1, 2, --., N. Associated with 4, we have two subsets
with the same freedom in HY{[0, 1]; one is the msual piecewise linear space P* the
other ig called P} which is defined by the following: if u* & SP1, then for #;_ <o<<

z;, t=(@—a;.1)/h,
W () = { s a(1—8) +uyt, if |u,—wuy_q|/h<dl,
(2y_3+¢) {(uy+¢)/(u;1+e)}—c, otherwise 3
where ¢ is a parameter to be chosen such that it well-defines the formula and makes

(29)
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a better approximation for the special problem, and di is 2 control constant.

For a fixed u(s),divide the interval [0, 1] info two subintervals such that
{0, 1] =1I,+I,, where I, is a Tegular subinterval over which the first derivative of
u{z) is bounded by a control number and I, is a singular subinterval over which
w’(z) could be very large (near boundary layer in thig problem).

For fixed ¢ and dl, SP%! consisting of all admissible elements of (29), is a
nonlinear subset in H?. It differs from the corresponding linear space V* only
where the element has a large first derivative.

In the test function space, we keep {v;} as the “roof” basis:

m}‘(m) ={(m"m3-1) /by, @y aso<oy, j=1, 2, >, N —1,
(ge1—2) /b, T;<T<Dji.

For simplicity we first suppose that the coeflicients p and ¢ of (24) are constant.
In order to integrate (25), we need the following lemma which can be verified by

an integration by parts.
Lemma 9. ZFor ab>0,

b—a
log(b/a)’

i s
: 1,‘=j At Qi Ty 2Pt Bt 2 e,
0 - b—a

, Tog(b/a) | 10g(/a)
We have derived some inequalities in [14] about I, and I; which will be useful

for later discussion. . _
Lemma 10. Suppose @, b>0. Then

(ab)Y 2 Ip<< g+ ;

q
Iu == j(} &~ ht di =

In particular

2
1 ol —1/ap1/4 a+b b+ (ad)™”
—2—(::56) min (1, ¢ 146 <1 < y ma.x(l, i ),

with equality ¢f and only if a=b.
The corresponding integral of linear interpolation %o I; ig

- (k+1)b
SCES))

Therefore, it is not difficult to verify the following estimates:

it i
L_I,,=L T (L—#) +be]t* di =2

0<Lru—ro~<-§—<bﬂﬂ—aﬂﬂ>ﬂ.

'115 bi/2 —at/?) _(bif'-‘—zmifﬂ)agm—-Iﬁ%@l"”—a”ﬂ) (262 —a'/?), b=a>0,

— o (a—b) < LIy — I < -(a4 = b/4) (¥4 + a5+ gD = 28Y1), 00>,

gt [EEg—io] ™ . o0 {L11—11|=%.. (30)

O<g, bl 0<a, 0l

Integrating (25) from @,_; t0 ; yields -
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a{ug, v5.) "',[: (—E-—I—pt) (e+u;_1) " (c+uy)t log cj—t;i dt
+th‘ {(e+us_1)**(e+u)t —c} dt
WUyg— Uy_4
=—£—(uj—u§_1) +p{c Y Iﬂg((c—l—;a,)/j(c+u;-1))}
C (175 ol b Wy —Ujq
+hg{ 103'((0""“.:)/(0‘1‘%1—1)) (log((c—l—fz;,_i);‘(c—l—u,)))ﬂ }

Similarly, integrating (25) from @, to ;.4 leads to

% g s ' +u
a(uly W)= (= PO=0) ) (o) (e o) log L2 g

) |
+h9L {Ce+u) (et upq)! —c}ide

g Uspa1 U 4
= _E(u,—-uﬁ;l) “‘P{(G‘F"E&J) lt}g( (G +LJ+1)/1(G+%§))}
¢ . (17 +¢ Ui+1
b { ; 10g((c+u;)/ (c+up1))  (log( (ﬂ+u;+1):’ (e+uy)))* } '

For [ay_s,¢,] €I, a straightforward computation yields

ﬂ(“f: ‘1’?) *%‘[2’“"!_“!-1 ~ Ujy1] +%‘P(“J+1" ’15;-1) -+ % 7 (Ussa +4%1+%5_1) = .-(31')
For [e;_,, @] €1,,

&
G(”ﬁ"; 1’?) =ﬂ('¢~¢§‘, 1’?—) T ﬂ?(ﬂi ?J?+) ='E‘(2“i_uj-1““f+i)

Wig1— U Uy — Uj_1
+f’{log<<o+é;+1)/fc+ua) e )

1 , - 1 J -
log ((e+us)/(e+uyss)) 103((‘-"*‘“3)/-@"‘“1—1))]

Uy —Ujyq Us—Usy
; (lﬂg((c+w+1);(a+u,)))ﬂ (lﬂg((c—l—u,_i);’(c+uj)))a } (32)

Comparing with (31), we rewrite the lagt formula (32) in the fﬂllnwiﬁg type:

+gh{(c + u;)[

ﬂ'('lﬂ:', 1]}) =%(2‘M§ —Ugq — ‘HiH.i) +—-—j? (‘1654.1 — Uy 1) —+— g(u,+1+4u; +‘I£;_1) "|"g;, (33)

where g, is the right—hand side difference between (32) and (81).
Define a=-2-, Substituting (31) and (33) info the generalized Galerkin method,

)
i.e.,
II(‘ILL *‘!?_?) e (f: "U?) for ?=11 21 TR N_]-: - (34)
gives ( ) " -
f.v]), i,
LU= { | 35
" (f: ?)_Q(Uh—h U.?f;: U?+I): if.?EIu ( )

where the lefi—-hand side
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e (e G- ) Or (2 0) O3 (o=~ )P

which is exactly the same as the scheme from usual piecewise linear subspace,
(85) can be rewritten in a special matrix form as (22)
AU =d+Q(U), (36)

where A= (o,;) is a tridiagonal matrix and

2 6
ay=1 20+ 20 g, i=j, (37)
| __p____}.v,_. G g
] (ﬂ: 56 q), p<17,

Denote the determinants of the first j and the last N —i principal determinants of A

by D; and I x4, respectively. Set

-Dn-:[ -
Bﬂ D“ b ﬁjfﬁ‘-l .Dj,N_.j_ .

Using the recursion formula

s 2h D _
po={2a+ 2 g—(a—%

>| =
oY
SRR
—
)
+
bofR3
|
|
<
o
w
- |
B
L

3

we obtain the following lemma.

_E P A
Lemma 11. If o« h}zﬂl-ﬁq,thﬂw

-1
Bnﬁ{a+%——g—~ } for alb n<N—1,

ﬁu,rr-:l‘ié{m—l-%—_—% g}-i for all n<<N—1.

Thus, we find a relationship between the elements of the inverse matr
Theorem 12. When

ix A1,

_2- P R 3
ol b B k5

A"t =(o;}) is non—negative and

arlzarl,, if6=j or ei<diii f9<J (89)
Proof. Making use of (37), we only need to note that
'-j & L
(ﬂ: +-‘E- = -]l Q') Dj—i-DN—:l-i,"‘DN—l,r if "3',,.}_?,
;= = . (40)
o8 -4 " -
( = %‘_-g— 9‘) Di_1Dy_y_ 3/ Dy_1, if 9.
Q.E.D.
When A™! exists, from (36),
U=A"1d+QT)). (41)

stimate of |A~J(Q(U))|, where J(Q) is the Jacobi matrix of

Now we look for an e
isting of the constant component ¢.

Q. Let v=u-+-¢, where ¢ is a constant Vector cOns
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Note that Q;(v) is homogeneous for j<N—1. Applying the Euler theorem of
homogeneous funciions, we have

{J(Q(uw)) (ute)by={Q(w)};, if j<N-1, | (42)

Since the singularity of the exact solution of (24) is only near s—=1, the width

of the boundary layer is less than ke, where % is a constant. By inequalities (30),
(89), (38) and (40), a siraightforward computation yields

J(Q(w)) (u+e) =10, «+, 0,Q, -+, Qy_3, @y-1},
{A7T (Q(u))uli=0a+hgw,

where
Y p b p _2 L p_A 2
4 {(ﬂ?"[' 5 % 3 Q){Ti”"“:: 2 g Qkﬁ{(ﬂ i 5 6 g)hg'];"{ 7 qu‘
Therefore we have
Theorem 18. If the mesh size satisfies condition (38), ¢.c.,
2 L. [ah . & Sgﬁifﬂ}—lﬁze{ 9 Egﬂ} ’
as well as
ka%—?’ﬁ (44)

8¢
holds, then, the map A~1Q(u) s contractive, and the semilinear system (36) can be
solved by the following convergent “simple’” iteration
AU =d,
AU® =g +Q(U% DY, J==1, 2,e. (4b)
Remark. When g is small, in practice, the mesh condition (48) can be
simplified to h<-25,

P _
Now we derive an error estimate, Let » be the true solution of (24). Decompose

% in the following way"®:
.u_(m) — 4}.1{3""?[1)(1*!]."3 +Z(m)}’ (46)
where 7y is a constant bounded uniformly for all 0<e<1, and

2(2)|<0, |2'(2)|<0, 12"(@)|<O{L+ esa-or],

O being a constant independent of & and 0<C8<p".
We have shown in [14]
Lemma 14. ZLet u be the true solution of (24), ¢f h and & are of the same order,

then
|u®|.=0),  j=1,2, -, .
n_ U -t lj{ 7 %' }"‘ —O(h-2
lor =2 —ogs, Huwr—2 V| ~oa), (47)
where ﬂ=]jn3 111::3 s’ (&) /p(l) =.

In addition, using error estimates for such a sub-linear positive inferpolation
function «} of u(x) in SP}, we have shown in [15] that

|wi—ula=0C), |uwi—u'[.=0(D). (48)
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Since the width of the boundary layer is in the same order as g, if A is also kept
in the same order as &, then, |

b —ulo=0(h),  [ub—uli=0(R%),
[ —us,e=0h), | —tl1010=0). (49)

Let H, and H, be the Hilbert spaces having regpective nerms (27) and (28).
~ Applying Lemma 8 and nsing (20) we obtain

4
[ —u? " s‘ga—{uu ‘Ur.rnu:l,a 1;:'1'“(“ u?) — (U= 1.0 1s6

5 ” ('u"_u'Jh) S ('H’_%Jh)f 1,8, :l,’s}:
where the subscript I denofes the interpolation in the fest space V" a piecewise
linear function subspace. On the right—-hand side of the above inequality, the first
term is dominant. Hence, from (49), we gef the main error estimate for scheme
(34). |
Theorem 15. If the mesh size satisfies condition (43), then,

1+ <Oh, (50)

where C s a constant which is uniformly bounded for all small & satisfying (44).
Substituting the true solution u into scheme (86) and applying the Taylor
expansion and uding equations (24) and (30) ymld

| 2s —u

Lyuy= ([, v5) +0(#°) + { pu® +qu''} -+
Ifjel, forjcl,
Lﬂ.ﬁ;"" (f,r "U?) +O<hﬂ) —-g;(u;_i, uh 1{.5_[_1) —{—T-;r'j(-u,)!

3 13\ !
Trf(u) =__}E_{pu{3]—fp< e ) +2qu”}

G+u
.Notlng that the width of the boundary layer in only k¢, using (47) we have

| 4T (0) ] = O(h). (51)

'u’g_u'ummo(h’).r
Uy —U' [ (o =0(1).

||.?.&§—’E.& o=0(}£-1'5),

|t —u1=007).
‘Summarizing the above resulis gives the following theorem of error estimate,
Theorem 18. For small & satisfying (44), if the mesh size satisfies condition
(43), then the generalized Galerkin method on the subset (84) has one more order of

precision than its corresponding scheme of piecewiss linear subspace, i.6., there exist
constants Uy, U1, O., and O.. which are uniformly bounded for all small & such that

b — ufo<OphtS, |ul—u| <O,
i}~ ] <Ok, Ut —v| <O . (52)

For variable coefficients p and ¢, it can be similarly shown that the above
‘conclusion remains valid for small e if two.additional inequalities are satisfied:

Furthermore

Similarly,
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g
s ”P”m
“(93—1+49‘1+9f+1):" (P:H-i —Pra)y §=1; 2, = - (63)

the latter inequality is a discrete form for the Elll ptic condition of ¢{z)=>p'(x).
In fact, we only need o point ont that, owing to the smoothness of p and ¢, if
we substitute their piecewise linear interpolations into (25), then, (31) becomes

@ (%s, ¥5) = fT [220y— g3 —Ugsa]
1,
+ 3 [441(2py +Dy41) + s (Ds2 —Piss) ~Us2(2p5 + P4-1) ]
h O(r®
a5 (U5 (@5+95e1) +us(gsa+8¢5+sea) Tus-1(gs+¢5-1) ] +O(H).

The agsociated tridiagonal matrix 4= (a,;) in (37) now isg

o [“‘"'1—(22?1 +p5-1) —"ﬁ* (gs+ Q’J-:L)]; p=3+1,

F

' ﬂ"igf=12‘x*_(f}f+1".pi—-i)+ (9’1-:-1‘5‘69!"’9’;-1): ‘?'fﬂ.?'*

e [“ '_‘"g‘(gﬂf_'"f’ﬁi) —'“ﬁ (Qf+9‘3+1)]; =41,

'The rest derivation is similar to the above, and we omit the details.

§ 5. Numerical Results

In the tables below, we adopt the following notations. lLet N=1/A, 8L
‘represent the subset scheme (84) and I the corresponding linear scheme. Denote
the maximum error with sign of the discrete solution by Er(Max) and the node
where Er(Max) occurs by ay. The notations Ex(HI, eps), Er(HO) and Er(H1)
‘represent the approximation errors in terms of H,,,, Hy and H,, respectively. The
OPU time is expressed in seconds. The Fortran program was run in double
precision, on a DEC-Systemn 2060 compuier. The iterative error control for (45) is
set 10 107° and the constant dl=2 in (29).

Ezample 1. Consider a linear singular perturbation problem with constant
coefficients, |

Lu=—eu'"+u'+(1+8)u=F(z), in (0, 1),
1 (0) =u(l) =0, |
swhere f(e¢)=(1+4¢)(a—b)v—sa—0b, a=1 +e“1f“}’", b=1+e¢"", with tr@e solation
u(®) =e~GrIE—eVs g¢ g1 (a—b)a.

The results listed in Tables 1-—4 show that:
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Table1-1 SI. k/e=1.5
__—_______—.————-——————_'_—___—_-—

N Tas Ex {Max) Er(H1, eps) Er (HO) Er(H1) CpU
25 0.920 ~0.5837D—02 1 0.8508D—01 | 0,1740D—02 | 0.2146D+00 0.09
a0 0,960 —0.60238D—-02 | 0.2079D~01 | 0.1239D—02 | 0.1798D+4-00 (.16

- 100 0.970 —0.4562D—02 | 0.1555D-01 | 0.7205D—03 | 0.1902D+00 0.50

200 0.985 —0,1810D~-02 | 0.8410D—02 | 0.2019D—03 | 0,1456D+00 1.07

400 0.993 ~0.1220D—02 | 0.5495D—02 | 0.1031D~03 | .1346D+00 2.17

800 0.996 —0.5259D--03 | 0,3000D—02 | 0,3223D—04 | 0,1039D+00 4.47

1600 ¢.998 —0.3363D—08 | 0.1828D—02 | 0.1483D~—04 | 0.8028D-01 8.56

M

Table 1-2 L. h/e=1.5
__r____——-————————'__—

N Zar Er (Max) Ez (H1, eps) By (HO) Er(H1 CPU
25 0.960 —0.8199D—01 | 0.1216D+00 | 0.1742D—01 | 0.7371D400 0.40
50 0.980 —~0.8112D~01 | 0.1183D+00 | 0.1223D~01 | 0.1019D 401 0.06
100 0,990 —0.8070D—01 | 0.1167D+00 | 0.8620D—02 | 0.1425D+4-01 0.33
200 0,995 —0.8048D—01 | 0.1159D+00 | 0.6084D~02 | 0.2004D+-01 0.75
400 0.998 —0.8038D—01 | 0.1165D+00 | 0.4299D~-02 | 0.2827D+01 1.53
800 0.9¢9 —0.8038D—01 | 0.1158D+4+00 | 0.3038D—02 | 0.3992D+01 8.23
1600 0.999 —0.8030D—01 | 0.1152D+00 | 0.2148D—02 | 0.5641D+01 6.54

M

Table 2 SIL. k/em1.75

M

N Ty Ex (Max) BExr(H1, eps) Er (HO) Er(H1) CPU
25 (.920 —0.1800D—01 | 0.4066D—01 | 0.4860D—02 | 0.2671D+-00 0.11
a0 0.960 —0.6682D~02 | 0.2341D—01 | 0.1254D—02 | 0,2187D+400 0.25
100 0.980 —0.4199D—02 | 0.1643D—01 | 0.6130D—03 | 0.2171D+00 0.51
200 0.990 —0.1913D-02 | 0.1043D—01 | 0.2120D—03 | 0.1950D+00 1.11
400 {0,993 —0.1162D~02 | 0.6063D—02 | 0.8863D—04 | 0.1604D4-00 2.48
800 0.996 —0.7638D—03 { 0.8817TD—02 | 0.4342D—04 | 0,1428D+00 4.93
1600 0.908 —0.3355D—03 | 0.2080D—~02 | 0.1374D—04 | 0.1101D+00 10.03

M

Table 8-1 SIL: k/e=2.0

_________—_—_———-——_-_—'—_-———-—

N 0 5 Er (Max) Br(H1, eps) Er (HO) Er(H1) CPU
25 0,920 0.6469D~02 | 0.2060D—01 | 0,1423D—02 | 0.2097D~4-00 0.18
50 0.960 —0.7583D—-02 | 0.25¢2D—01 ( 0,1366D—02 | 0.2588D~-00 0.36
100 0.970 0.3605D—02 | 0.18350D—01 | 0.8779D—038 | 0.1921D+4-00 0.66
200 0.990 —0.1235D—02 | 0.1032D—01 |} 0,1033D—03 | 0.2064D+4-00 1.47
400 0.990 0.1452D—02 | 0.5153D—02 | 0.7843D—04 | 0.1457TD+00 2,93
800 0.996 —0.65121) - 03 | 0.4100D—02 | 0.8331D~04 | 0.1640D+00 5.81
1600 0.997 0.8136D-08 | 0.1324D—02 | 0.3186D~04 | 0.7485D—01 j§ 12,21

. .
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Table8-2 I- h,e=2.0
B A o R —
N Tpr Er (Max) Er(H1, eps) BEr (HO) Er(H) CPU
25 0.960 —0.1866D+00 | 0.1647D300 | 0.2753D—=01 | 0.1149D+01 0.03
50 0.980 —0.1360D4-00 | 0.1614D400 | 0.19839D—01 { 0,1602D4-01 0.21
100 0.990 —0.1356D 00 | 0.1597D-00 | 0.1369D~01 | 0.2250D+01 0.37
200 0,995 —0.1355D+00 | 0.1589D 400 | 0.9668D~—02 | 0.3171D+01 0.77
400 0.998 —0.1354D4-00 | 0.1584D 300 | 0.6838D~02 | 0.4477D 301 1.55
800 0.999 —0.1354D 400 | 0.1582D400 | 0.4830D—02 | 0.6326D+01 8.35
1600 (.999 ~-0.1354D+00 | 0.1581D--00 | 0.3215D—02 | 0.8942D 401 8.61
M
Tabled ST: h/e=2.25
eyt
N P pr Er (Max) Er(H1, eps} Exr(HO) Er(H1) CPU
25 0.920 0.1618D—-01 | 0.2526D—01 | 0.3461D—02 | 0.1877D-+00 0.17
50 0.940 0.2635D~01 | 0.2103D—01 | 0.5016D—02 | 0.2167D+00 0.48
100 0.980 —0.4804D—02 | 0,1985D—01 | 0.5968D—03 | 0.2076D 400 0.86
200 Q.990 —0.1228D—02 | 0.1143D—01 | 0.9819D—04 | 0.2424D+-00 1.46
400 [, 0.985 0.1082D—01 | 0.7342D—02 | 0.9483D—03 | 0.2184D+00 3.86
800 0.988 0.2102D 02 | 0.4271D—02 | 0.9035D—04 | 0.1812D4-00 8.08
1600 Q.907 0.4134D =02 | 0.4955D~—02 | 0.2310D—03 | 0.2970D+400 16.28
i ' . s L e T — T s L i R o e e T e =TT
Table5-1 SI: h/e=1.5
e e i e .. e T P b e o el (¥ o [} e M e 11|
N Tar Er{Max) BEr(H1, eps) Er (HO0) Er(H1) CPU
25 0.920 -0.1030D—01 | 0.3845D—01 | 0.4679D—02 | 0.2337D+00 0.34
50 0.960 —0.5220D—02 | 0.1843D-01 | 0.1040D—02 | 0, 1593D+4-00 0,98
100 0.970 —0.4529D—02 | 0.1436D—01 | 0.6564D—08 | 0.1757D-00 2 .42
200 0.985 —0.,1742D—02 | 0.7681D—02 | 0.1787D~-03 | 0.1330D+00 5 .40
400 0.993 -—0.1201D—-02 | 0.5141D—02 | 0.9504D—04 | 0.1259D+00 11.58
800 0.996 —0.5050D—03 | 0.2820D—02 | 0.2971D—-04 | 0,9767D—01 93 .48
1600 0.998 | —0.8337D—03 | 0.1738D—02 | 0.1397D~04 | 0.8515D—01 47.13
Table53-2 ZL: h/e=1.5
N Tar Er (Max) Er (H1, eps) Er(HO0) Er(HI) CPU
- 1
25 0.960 —~0.8244D—01 | 0.1217D4+00 { 0.1773D—01 | 0.7377TD+00 2.64
50 0.980 —0.8125D~01 | 0.1184D4-00 | 0.1231D—01 | 0.1020D 401 $.63
100 0.990 —0.8100D—01 | 0.1167D+00 | 0.8685D—02 | 0.1426D 401 25.26
200 0.995 —0.8050D—01 | 0.1159D+00 | 0.6102D—02 | 0.2005D<-01 56.46
400 0.998 —0.8043D~01 | 0.1155D400 { 0.4305D—02 | 0.2827D+01 11.24
800 0.999 —0.8035D~01 | 0.1158D+00 | 0.3041D—02 | 0.3992D<4-01 23 .49
1600 0.999 —0.8031D—01 | Q.1152D400 | 0.2140D—02 | 0.5641D<+01 48.78
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Table8-1 B8L: h/e==1.75

N Ty Br (Max) Er (H1, ops) Er (H0) Er (H1) CPU

25 0.920 —0,1968D—01 | 0.3901D-—01 | 0.4724D~02 | 0.2562D<00 2.81

50 0.960 —0.6017TD—02 | 0.2080D—01 | 0.1041D—-02 | 0.1943D~-00 1.14
10G 0.980 -0.3879D—-02 | 0,1508D—01 | 0.5494D~03 { 0.1986D+00 8.26
200 - 0,985 —0,3431D—-02 | 0.1136D—01 | 0.3500D~—03 | 0.8124D+-00 7.61
400 0.993 —0.1143D—-02 | 0.5662D—02 | 0.8080D—04 | 0.1498D+-00 14.67
800 0.996 —0.7534D—03 | 0.3625D—-02 | 0,4076D—-04 | 0.1356D+-00 29.78
1600 0.998 —0.3246D~—03 | 0.1988D—2 | 0.1280D—04 | 0.1052D+00 65.90

%

Table8-2 I R/em1.75

N &g Er (Max) Er (H1, eps) Er (HO) Er(H1) CPU
25 0.960 —0.1163D+00 | 0.1453D-+00 | 0.2433D—01 | 0.9480D 00 2.73
50 0.980 ~0.1077D400 | 0.1411D+00 | 0.1566D—01 | 0.1312D 401 10.29

100 0.990 ~0.1104D+00 | 0,1397D+00 | 0.1145D—01 | 0.1842D+01 26.24

200 0.995 » | —0.1076D+00 | 0.1887D+400 | 0.78839D—02 | 0.2590D 01 56. 17

400 0,998 —0.1075D4-00 | 0.1382D400 | 0.5588D—02 | 0.3655D-01 119.92

800 0.999 —0.1073D+00 | 0.1380D+00 | 0.8908D—02 | 0.5168D+01 140.12

1600 0.999 ~0.1072D+00 | 0.1879D+00 | 0.2760D—02 | 0.7297D+01 496.64

Table 7-1 SL: h/em2.0

N Tap Ezr (Max) Er (H1, eps) Er (HO) Er(H1) OPU

25 0.920 —0.1928D—01 | 0.8572D—01 | 0.4404D—02 | 0.2507D+00 3.42

50 0,960 ~0.7551D—02 | 0.2858D—01 | 0.1238D—02 { 0.2354D+00 10.95
100 0.980 —0.83771D—02 | 0.1592D—01 | 0.4465D—03 | 0.2251D 400 25 .85
200 0.985 —0.2508D~—02 | 0.8006D—02 | 0.2355D—03 | 0,1601D+00 55 .86
400 0.993 —0.1181D—02 | 0.6546D—02 | 0,8375D—04 | 0.1851D+00 116,21
800 0,996 —0.7179D—-03 | 0.4017D—02 | 0.3538D—04 | 0.1607D+00 236.06

Table7-2 I+ h/em3.0

N & pa Er(Max) Er(H1, eps) Er{HO) Er {Hl) : CPU

25 0.960 —0,1421D+4-00 | 0,1653D+-00 | 0.2877D~01 | 0.1151D4-01 5.28

50 0.980 —0.1337D+00 | 0.1612D+00 | 0.1907D—01 | 0.1601D+01 11.33
100 0.990 —0.1255D+00 | 0.1590D+00 | 0.1264D—01 | 0.2242D401 27 .03
200 0.995 ~0.1369D400 | 0.1590D+400 | 0.9775D—02 | 0.3173D+01 58,68
400 0.998 —0.1337D4+00 | 0.15838D4-00 | 0.6743D—02 | 0.4474D+01 124 .48
800 0.999 —0.1328D4-00 | 0.1580D4+00 | 0.4715D—-02 | 0.6318D+01 248,85

w
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1. The iteration of (4D) converges monoctonically if the ratio A/s<2. The
Tesults agree with the theoretical analysis above, and the SL-scheme is more

accurate than the L—scheme.
2. When 2<h/e<2.2h, the iteration is siill convergent but with some

oscillation, and the error is getting larger. CPU time cosis more, too. If the ratio
h/8 increases again, the iteration (45) does not converge.

3. For a required accuracy, the CPU time costs much less using the §L—scheme
than the L-scheme. The smaller the s is, the more advantages the §L—scheme has.
For instance, given an admissible maximum error at knots <0.005, their CPU time
ratio are about 0.3:1.1 and 8:15, for e=0.01 and 0.001, respectively.

Ezample 2. Consider a semilinear singular perturbation problem

Lu=—gu" +u'+(1+e)u=f(z, ), in (0, 1),

w(0) = (1) =0,
where

£, u) ==a—b—(1—l—e){e"—u+ —r (mﬂ—b)m—ﬂ_’ },

with the same constants @, b, ¢ and the same solution as example 1.

In the semjlinear case, the advantage of the SZL—scheme over the L—scheme is
more obviods than in the linear case. The resulis by the §L-scheme also agree with
Theorem 15 and they are much betier than those produced by the L—scheme for a
same required accuracy (gee Tables 5—7),

Acknowledgement. The author would like o express his gratitude to Professor
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