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Abstract

Under an assumption of distribution on zeros of the polynomials, we have given the estimate of
computational cost fer the resultant method, The result is that, in probability 1—u, the eomputational
cost nf the resultant method for finding e-approximations of all zeros is at most

cdﬂ(lc::-gd+10g—+loglug .._)

where the cost is measured by the number of fhavaluatmns. The estimate of cost can be decreased to
c(dﬂ lﬂgd+d’10gi- +a loglog —1‘—) by combining resultant method with parallel quasi-Newton method.

§ 1. Introduction

Generally, search algorithms such as Lehmer’s or Kuhn’ s2% only converge
linearly, whereas iterative methods with high order demand an initial approxima-
tion which is sufficiently close to the zero. The resultant procedure™ based on
root-squaring process not only converges rapidly, but imposes no restriction on
the initial approximation. In the light of this, we estimate the cost of the resultant
method for finding all zeros in the sense of probability. To be precise, we shall
prove :

Main Theorem. Suppose f(z)=aw’+aw™ +++ay (6o5=0) 8 a random
polynomial whose zeros are independently und form random variables on [0; K] 12 Then,

for 0< 8 {l, O{p{:-%—,

method for finding s-approzimations of all zeros s ai most

cdﬂ(lngg d-+logs -}b logs logs %),

in probability 1—p, the computational cost of the resuliant

where ¢ only depends on R, and the unit of cost &s defined_as an f-evaluation which @8
turned into d multiplications and addiiions.

From the theorem, we see that the cost of the method is of loglog ¢ type, and is
a low—degree polynomial in d. As the cost is relatwely fow, the 'resulta.nt method is
tra.cta.bla and worth notice.

* Received July 21, 1984,

1) Projects Bupported by the Science Fund of the Chinese Academy of Beiencea.
2) [z; 7] is the disk with center 2 and radius .
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§ 2. Elementary Assumption and Computation of Probability

Let O be a complex field. We define the following polynomial set
B(R) ={f: 8f=d, all zeros {;(4=1, 2, -+, ) of f satisfy | &4l QR} (2.1)
as a probability space, and propose the fullnwmg

Elementary Assumption The zeros ({4, {a, -, &) of & polynomial equation are
uniformly independent random variables on [0, B]%.

Conventionally, one always supposes that the coefficient of the first term of a
polynomial is 1 and other coefficients are independent uniformly random variables
on [0; R]’ see [4—6]. In practical computation, it is difficult to consider the
dmtnbuhnn of the coefficients or zeros of the polynomials to be solved. The study of
computational complexity is to give some information about the tractability of the
method, the cost fanction in degree d and approximation error e.

‘Assume G is a Lebesgue measurable subset of {(z;, 29, **, 24): %€ C, |z]<eer g
22|, £=1, =+, d}, B(Q) is a set of the polynomials in B(R) whose zero veotor, after
proper arrangement of the orders of components, is in @. Define the volume of &
in a complex field as the volume of the relative sget B ( G'), and the probability of

1SEB(G)} as .

_ vol G I= vol &
PLfed (@)} = vol B(R) (wR*)°/d!’

Let
To(B) = {f: FEB(R), st Lo, ST =F(L) =0, | |&s] — |Lal [<Bo},
ERJ.(R) ={f- fE%(R), agi%cﬂ: IE1|< ‘ Eﬂl:f(ti) =f(€ﬂ) “0:1"- "%“:- <l}:

n,(R)u:-{f_: FEB(R), 3y, F(L2) =0, ‘argci— 7";"' ]m, e 3}.

From ihe definition of polynomial sets and a simple' computation of volume,
the following lemmas can be proved easily.
Lemma 2.1. Suppose A>0. Then

| Dr(B)DR(R).
Lemma 2.2.

PLrED (B2, P{fEU(R}<I2,

§ 3. The Resultant Method for Solvmg the Polynomial Equation

Let f (z) oz’ + @z 4 --» 4+a,. Define

Tf(2)=j(2) f*(2), (3.1)
where f°(z) =ae’+---+a;. Obviously 7'f(z) becomes a polynomial with real
coeflicients. For convenience, we also write f(z) for 1 (z).

The resultant procedure is divided in two steps: First, compute the meduli a
all zeros; second, compute all real zeros and all quadratic factors. Now we are going
to give the detail.
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Suppose that the zeros {4, {3, {, Zg, . Cﬁ, I of f (z) =moz"’ + 2?7t 40 g, satisty
A8a| > [La| > | La]. .

1) Construet the polynomial sequenﬁa { f ':"(ze) }, where the zero of f {“(z) is the
2'—th power of the rela.’ﬁlvra zero of f(2), that is

fzm='a Iy Z.%{ f(CJ) =0 f(i}(gji}) 0 jﬂlj 2: Y d: i'='1: 2: wiee
¥rom the Gra.eﬁ'e process, the coefficients of £9+2(z) could be taken as

min(2d—4,§)

aP=a;, (~1)'af*O=(a")+2 3 (=1Vafas. (3.2)

From the connection between coefficients and zeros, it can be easily proved that -

lim 2+t /%7 ] Bl
Igfl.l 7 = p e

8 ﬂlﬂ
- -

So, when ¢ is large enough, we take q;,,-———2‘+1\/ 2 as the approximation of ||
f—
within required precision. We wrile q,=1im qs, s

2) First we check whether +g¢, are zeros or not. Then defermine the gquadratic
factors. From the algebraic theorem, use the root-square process again to compute
all possible apfrﬂximaﬁons of the moduli of zeros for the following equations
Bop &1 °*'* WQag 0
0 ap *+ @gq_1 Gaq

9}(.?: g:f)s 1 P Q? =0.l j=11 21 ey d. (33)

By some decomposition of the possible quadratic faoctors and ohecking, the
approximations of all complex zeros can be obtained.

For the convergences, rate of the resulfant method the following proposition is
given in [7].

Proposition 8.1. Assume the zeros {4, {1, {2, Ls, »++, &3, {2 Of f(2) =apz® ++-+ -
@ag Eﬂ'ﬁiﬂf}" | §1| > | Cﬂl > nAe T I gg and define

22{?-!-1

€J+1 (m)
» 7 N/ 4md

441 =g, =max| -5

?l"ﬂmj j=11 2, «eey ds
Then

1

Im s — G5 (1“"’3""" ol I
9! ‘Q l_,ygmj) 1! .? 1.! 2: Jd:mEN‘

'§ 4, The Proof of Theorem

Lemma 4.1. Under the same hypothesis on f(2) and A, as in Propositton 8.1,

for 0<s<§ , of

2ﬂt?+1

g~/ dmd

m=m(s, ;:I, A) = [logﬂ log. logs — l l _(4.1)

|
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_ﬁ_—wﬂ'———'

(==} s i
o

then = 5 B -
.g_m:fg___?.L\gB, je=1, 2, nyde = (4.2)
]

Pﬁ'ﬂof. If m satisfies inequality (4.1), then

A dmd .
m=1og, log, E?ﬂ'—?—'l—'r

" 92 +1
| A szifff . 1+~/4de1+3._
i 1 | 1 s = * 5
14y \TH 14 \T" __(1+8)?
'(1-—«.'}‘-'*’”) T <(1£2) -&'(1_.8)_€1+s. (4.8)

Combining it with Propositionr 3.1, we have

Gmsi — 94 \‘QS, j=11 2, eer, d.
g .

Lomma 4.2. Suppose the zeros of f(z) satisfy §,=min|cos arg L;|>0 and an
'

approwimatton ¢m,; of the modulus of @ zero satisfies (4.2). Then the total number of

F
Graeffe transformations for finding @ %:i approzimation P, of |p| of a relative facior

is at most m(—m—, @, ), whers ]pﬂ?lpﬂ?---?!pﬂmndl’=mm‘p‘“1.
6""9; ’ i YL

Proof. Because ¢m,; satisfies (4.2), from equations R, Im, ;) =0 (3.3) we
can determine some p’. For any p, assume that {=gq,'® is a zero of f(z) which
makes the best approximation to —pi by {4+, and write

0w, =(1+e)g, p=C+L

Then (seo (7))

p—rk] <SS 1,

R s(1+e) . &
\ L Iﬁs;: 2(1‘!"6)2&;‘\‘;\ 9f ?

and when n:}ﬁ( : —ls— g d, 3,’), we have

P;i?_pmh =
j}i—; = Hf'|"8 *
r : :
Because ’—%—- <1 g , combining it with (4.5), we have
f
D — P e G;+e _ & |p—Punl 28
) P €9f+8 7 by’ 1 P lg\iar'

Yomma 4.8. Supposs ¢m,; i an approvimation of q; and define

Ma,;(B) = { f: fEB(R), there exist 100 26708 P1, Da Of equation (8.3),
P | <3 }

P

satisfy |p1] > [pal, 1—

Then
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- vol I, ,(R) 1.4 " |
— a5 <204|p| %81 (1+R), (4.6)

, B
where |p| m?x( 1| 4 IC‘I-). |
Proof. Because pi, ps are two zeros of equation (3.3), there exigt two zeros ¢,
a of f(z) which satisfy |

3 2
p1=z_:1+i§f—, pa=La+ Tt |

For a fixed {;, write {s=2+¢é. Then from |p,| = (1—0)| 1]l (0<8), we have a
plane algebraic curve

P, (&° =4+ ¢5.1)* +42°%" — | p1 | (a*+4%) =0. (4.7)
From the theory of algebraic geometry, the length 1(P, N [0; B] )of Py [0; B] is less

than bz R. From the effect of coefficients on. zeros, it is known that for any o<§, all
points of P, [0;R] are in the region

{(=, y): mﬂx(lm—wol,!y—yul)%'{-{?»(l-*-R)*ﬁlzal"}%,(mn, Yo ) EPoh [0; R]};

1 1
and the volume of the region is at most 10w R(R +1)8%|p|2. Because there are at
most d zeros whose moduli are different, it is easy 0 get (4.6).
’
Proof of the main theorem. Suppose 0< ,u,{i, O<a<—i—-. Define
ED?PM.“: ('R) i @Fn (‘R) U l“I-ﬂl (R)r

where po=-r, ay=-7. From Lemma 2.2, it follows that

P{feM,, (R)}=TYOLT(R) i p_ u

volB(R) "4 4 27
and when fEeM,, ., (R), we have |A]<1— p,. Combining Iemmag 4.1, 4.2 with 4.3
and |log _L |<§ —2&~, it ig true that
1—w i 1—pw

i) the total number of Graeffe processes for computing - —is —relative approx-

imationg of the moduli of zeros 18 at most

1

—approximation of the modulus of a zero, define

; i
5 ={—-—-——P"— P
# id

80 d4(1+R)(1+‘/ R

ii) for a 118

When

FELF FEWRusor 3, (T =0, (Ll < /2 ) s,
j

then A'<{1—8&; (see Lemma 4.2). So the total number for computing an g-relative

~-+log, logs ), and P{f €0} s 5

approximation of a|p| is as moﬂt'O(IOgﬂd—l—logg;
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jii) the amount of arithmetic operation of a Graoffe transformation equals
¢,d?, and that of writing in general form the polynomial defined by a deferminant
(see (3.8)) equals cad®; the ovalution takes less operations. Besides, the fest of the
zoT08 Tequires at most cgd? arithmetic opration.
In summary, in probability 1—pu, the computational cost for obtaining a-
relative approximations of all moduli of zeros and |p| by the resuliant method is ak

most
2 1 1
od (1ogﬂ d-+logy= -+ 1oga 1ogs .-E-).
Because the order of the cost in d, i—, % .+ the above estimate gives the order of d,

i, 1: of the cost for computing all g-approximations of zeros, only the consgfants o
depending on R are different. So the main theorem holds readily.

Remark. If one thinks that d? loglog

-1—'- in the estimate of the cost increases
100 fast as d inoreases, one may combine the resultant method with the parallel
quasi-Newton method™®®, with the estimate of the cost at moss

»
1
¢ (CF ].Dg d -+ d? ].Ogg %"I‘d log, logg _S—).

Unpder the assumption of uniform distribution on the coefficients of the polyno-
mials, the estimate of the cost for the Lehmer—Newton method is relatively low

the estimate is ¢ (d®+d” log-;% d loglog 5;—)

Acknowledgment. The author wishes $0 thank Prof. Wang Xing-hua for his
useful suggestions and Prof. Wu Shao—ping for her help during the preparation of
this paper.

References

{1] D. H.Lehmer, & machine method for solving polynomial aquations, J. Assoc. Comp. Math., 8 (1961),
151—162.

(2] H.W.Kuhn, Fixed Point Algorithms and Applications (edited by B3. Karamadian) , Academic Press,

New York, 1977, 11—40.

[3] E.H. Bareiss, Resultant procedure and, the mechanization of Graeffe process, Journal ACM, T (1960),
346—386.

{47 8. Smale, The fundamental thoorem of algebra and computational complexity theory, Bulletin AMS, 4
(1981) , 1—36.

[5] Wang Ze-ke, Xu Sen-lin, Approximation zercs and computational complexity theory, Scientia Binsca,
97 (1984, 566—-575.

{6] Wang Xing-hua, Xuan Xiao-hua, Random polynomial space and computational complexity theory (to
APPEAr) .

{73 A. Ralston, H. 5. Wilf, Mathematical Methods for Digital Computer, Vol. 2, John Wilsy & Sons Inc.,
1968, 223—2358.

f8] K. Weiersirass, Neucr Beweis des Satzess, dass jode (Garze Rationale Function einer Veriaderlichen
dargestellt werden Kanr als ein Product ans Lineare Function dersellben Verinderlichen, Ges. Werks,
Vol. 3, 1803, 251-—269. . s

[9] Wang Xing-hua, Zben Shi-ming, The quasi-Newton method in parallel circular iteration (to appeaz) .




	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg

