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Abstract

Starting from the canonical boundary reduction, this paper studies an approximate differential
boundary condition and an approximate integral boundary condition on an artificial boundary for the
exterior problem of a harmonic equation, and gives an error estimate for the latter. This agtimate
reveals the relationship between the exror and the approximate grade of boundary conditions as well as
the radius of the artificial boundary.

A

§ 1. Approximation of the Integral Boundary Condition

The treatment of an elliptic boundary value problem over an unbounded
domain by the classical finite element method is often a difficulty, because a simple
replacement of the infinite domain by a bounded domain can hardly produce the
demanded accuracy. The canonical boundary reduction suggesied by Feng Kang':®
and the coupling of the canonical boundary element method with the finite element
method™ have provided an approach to this problem.

Congsider the boundary value problem of a harmonic equation over an exterior
domain Q with smooth boundary I,

—Au=0, in Q,
-g—q—lz:-_—'f, o1 Fh (1)

% is bounded at infinity,

where f€ H™ (I',) satisfies the compaibility condi-
tion. We draw a circle I'y with radius R enclosing
I, Qis divided into @, and £, (Fig.1). Then fhe
canonical integral equation on I'g, obtained from the
harmonic boundary value problem over the exierior
domain Q, by canonical boundary reduction, is jusk
the exact boundary condition on. the artificial bound-~
ary I'yz of the original boundary value problem,
 i.e. the problem (1) is equivalent to | Fig. 1
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{' —'A“Hr —_".0, i]l Qi_’
_gﬂ'y'“ s - on I‘“

P 1 2
——(R, §) = 7= u(R,0), onI%,

l J 4:‘!’3 Siﬂﬂ —2—

where £ is the bounded domain between I'; and I'z, and * denotes the convolution,
which can be defined by the Fourier expansion. Because'™

1 i .2 L =

— e e o .
4::::Rsi-nﬂ% 2R 2 |19 =g 2 noosad,
the integral boundary condition of (2) can be written
oo 2%
%:-'(R, §) = ;R > nL (R, ) cosn(9—8") df’". (3)

Obviously (8) is a non-local boundary condition, and its kernel is highly singular.
We attempt to simplify this boundary condition for the sake of easier application.
Using the asymptotic expansion method, [3] has obtained a series of asymptotic
radiation cnnditiong for reduced wave equations, These approximate boundary
conditions are differential (i.e. local) boundary conditions. But this method is not
applicable to the harmonic equation, so we naturally think of replacing (8) with an
approximate integral boundary condition

2

ou 1l =
S (R, 0) == Siaf

n=1

" w(R, §)oosn(—6")dd", (4)

0

where N is a positive integer. The integral kernel of (4) is nonsingular of course.
In particular when the Fourier series of (R, §) only contains the drst N terms,
this boundary condition can be reduced into a local boundary condition

T I S I
W(Rs ) J7; 2 ﬂk—ag"—g;— u(R, 9): (5)

F L
where o, (k=1, ---, N) are the solution of

W
i:=21 (_ﬁﬂ)kﬂk= — N, ﬂ'=1.l 21 "t N,

We call (4) and (5) an approximate integral boundary condition and an approximate
differential boundary condition of grade N of (8) respectively. The first four
approximate differential houndary conditions are as follows: |

ou 1 u

V=l =z @ o 6)1
_ ou __1/7 Pu 1 &u’ '
=% ar R(F 90> 6 ob" ) (6)s

* du 1/74 &u , 16 &*u , 1 &% =
=g ar ‘"R(ﬁo 50% " 60 26° ' 60 26° ) (6)s

s Ou 17533 &#u | 48 2w , 11 &% 1 &uw _
S or R(420 96* 144 99* ' 360 ag° +1008 353.)' - (8

Let Di(u, ») = L Vu.Voda,
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D, =§Er’” f”' 3 n cos n(6—8)u(R, 8')v(R, 6)d6’ dé,

0 0 =

D¥ (u, ) =-3-1';-r# rﬂ S neosn(@—0Yu(R, 0o (R, §)d§’ dF,

1 0 n=1

Qr N
D¥ (u,) =L 31 (-1)*a, % w(R, 9)__5";% (R, 8)dH,

F(v) = L' fuds.

Then the boundary value problem (2) and the problem. corresponding to the
approximate integral boundary condition (4) or the approximate differential
boundary condition (6) are respectively equivalent to the variational problems

{ Find v € H*(Q,) such that G
» D, (4, v) +D(u, v) =f(v), Vo€ H M)
a
{ Find «¥ € H1(§,) such that (8)
Dy(u¥, v) +D¥(u¥, v) =f(v), Vo€ H(Q)
oT

{Find w¥ € HY{(Q) NHY(I's) such that (9)

| Dy ) +DF(uF, v)=Ff(»), Yv€H(Q)NHY(IS).
Proposition 1. If ax>0, then D¥(u, v) is a nonnegative definite symmetric

bilinear form when N is a positive odd number, and it is not nonnegative definite

when X is a positive even number,
Proof. If N is a positive odd number, because the polynomial Pay(a)—o=

i:t (—1)* ¢, 2™ —g has at most N+1 different nonnegative roois and =0, 1, .-,
N are its roois and (—1)¥lay >0, we know that Poy(#)>>N>>0 for > N. Then

T¥ (o b, o8 al) — DF (einafl, win wd)= B (=L tuaam0, 8=0, 1, =

k=1
Hence D¥ (v, v)>0, Vv € H(Q,).

If N is a positive even number, then (—1)Y2ay<0. Let @y be the largest root
of Pox(2). We have Pay(2)<0 for o>zy. Therefore D¥(u, v) is not nonnegative
definite. |

Corollary. D"(u,») and D®(u, v), associated with the boundary conditions (6)1
and (6),, are nonnegative definite symmetric bilinear forms. D?(u, v) and DA (u,v),
agsociated with (6)a and (6)4, are not nonnegative definite.

We now congider another seriesof approximate differential boundary conditions:

o 1 *
'5(31 9)-'—'3? Eﬁhw u(R, 9), 10)
where B, k=0, 1, +-+, N—1, are the solution of
NE_I(_'“I)EBE= —n, ﬂ'=11 2: Ny Nl
k=1

ax
and u satisfies L u(R, 8)d@=0, which is not a restriction because the solution of

(1) is unique up to a constant. When the Fourier series of u(R,¢) only contains
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the first N terms, (10) is also equivalent to (4). The first four approximate
differential boundary conditions of form (10) are as follows:

N=1: _2“;=—%u, (11),
Y .
R T o N e

Sy XN—1
Tet D¥(u, w)=L S (1) g, 2’;‘: (R, 9)2—";;-(12, 9)d. Using the same method,

we can obtain

Proposition 2. If 8y_,>-0, then ¥ (%, v) is 2 nonnegative definite symmetric
bilinear form when N is a positive even number, and it is not nonnegative definite
when N ig a positive odd namber.

Corollary. 3"(%, ?) and Dt (%, v), associated with the boundary conditions
(11)s and (11),, arg nonnegative definite symmetric bilinear forms. ﬂﬁ"’(w, v),
associated with (I1),, are not nonnegative definite.

It is easy 10 see that D*(u, ), associated with(11),, is nonnegative definite:
Az
Dt (u, u)=L [w(R, §)]2 d§=>0.

Therefore, in order to preserve the nonnegative definite symmetry of the
bilinear forms, we use the approximate differential boundary conditions as follows:
(6)1 or (11); for N=1, (11), for N =2, (6)s for N =3, (11), for N =4, and so on.

§ 2. Error Estimate

Consider the following boundary value problem with approximate integral
boundary condition (4) |

- du=10 2 in Q{,

o
E;{ =f.: on FI: (12)
o

*3—T- = ﬂﬂjﬁ é 7 GOS8 %3*@5(3, 9), on FR-

nel

It is equivalent to the variational problem (8).
Proposition 8. D(w,, v,) and D¥(uy, 4,) are two nonnegative definite sym-

i,
mefric continuous bilinear forms on HZ{(I').

F—

Proof. Let Up= D, G6", G_,=a,,

o= D18,6%, b_y=b,, n=0,1, e,

Then -
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. o - —

1

Do, v0)=2 3 |nl abus< (25 5 n] aa[?) (22 3 I |Ba1?)

1
z
1

ﬁ%(szeg (1+ﬂ9)%}ﬂn |ﬂ)¥(2mR pof¢ +nd)E lbﬂ|s)

1
Zz

1
=§[|'u'0"%' r. "1‘10"_12_'11.!

1
F

D (o, v0) =23} |nafu< (2w ]l ]mnlﬂ)%(EniMf 5,7 )

L (5n RS (14+n2)* 2\ (2am S 1+9%|b|2%
< (2R3 Are)? o)) (B 7 1))
Q%“%“I.r."%"%r.

Taking vo=14, We have
D(uo, ue) = 2W§ ] | |20,

-~ N
# D¥(agy, Mu)=2ﬂz}; |n| |a,|2=0.

The proof is complete. Moreover,

o 2R = 1 1
f’(%o, Up) =_2W§|“| \ﬂn|9? <2 R > (1+'ﬁ2)-¥{ﬂnl2 o v 2R "ﬂuﬂzﬂicr.yr.:

—

o=

1
where P, is the set of all constants. Then D(ug, wo) is H2(I'g) / Po—olliptic.
Proposition 4. The variational problems (7) and (8) have one and only one

solution in H*(Q;)/P,.

Proof. Since f satisfies the compatibility
condition, we can congider problems (7) and (8)
in the quotient space H'(8;)/Py. From the
symmetric continnous V-ellipticity of D:(u, v)
in H(Q,)/P, and Proposition 3, using the frace
theorem, we obtain that D;(u, v) +D(u, v) and
Dy (u, »)+D¥(u, v) are symmetric continuous
V-elliptic bilinear forms on H'(£Q;) / P,
Moreover, f(v) is a continuous linear functional
on H(Q)/P,. Then according to the Lax-
Milgram lemma, the variational problems (7) and (8) have respectively one and
only one solution in H*(;)/P,. The proof is complete.

In order to obtain the estimate of u¥—u in energy norm, where " is the
solution of (8) and u the solution of (7), we first prove the following

Lemmal. ZLet g be the radius of I's which is the smallest circle enclosing I's. If
R>=aa, o>1, wC H(R) is a harmonde function in L, we have

Fig. 2

[ﬁ(w.: W)]%Q V/\/Ejl leirﬂi‘
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Proof. Because w is a harmonic function in £,, it is also a harmonic fanction
in the ring domain between I', and I'r. So we can let

U = i( bn I ﬂn'rlﬂ] )ﬂiﬂﬂ { Co : bnlna"’ b-n_En: 0___“=E"’ 'ﬂ-=0, 1’ cen

Then from
2 Beam /)l pw (2, 1| w |2 ._
IWIIFEi;JGJ.ﬂ (!_T +? W— )ﬂ'dﬁd’r
Rp2x [ o - b, ¥
-+ bﬂ 3 ST E bn .
(T +§'F O Y }'rcwdr
n
L] b "
>t 33w [ | Relr hromt o, L ar
vk O
-:2#:;273 lﬂ.l{( T P )]b IE_[_(REI,m Ein:)lcnlﬂ},
and 5
S n S bﬂr A I "
ﬁ(w,w)-2w§ I“'\R"l +cu R "-‘é’:l:rrgln[( !Rf‘i!'i - [ 0a|2RY 1)
R%0 R0
ﬂ
1
<dx 3 in M e 7w Il
Rﬂ‘

-4

frip (Rﬂ|n| __ﬂﬁ[nq) |0nlﬂ};

we can obtain

2R? 2
D, ) <y | 0 3,0, <o | w20

i.e,

[D(w ‘IB)]LE‘Q\/};Q_?‘]" '1,9‘.

The proof is compiete.
1
As a result of the HZ(I'g)/Py-ellipticity of D(us, vo)
lw| & e, <&/2 RD(w, w),

we can further obtain

HW”H* {I's) Py Qv?Jﬂj:Jﬁlwliln‘l

Temma 2. Iet R>o0a, c>1. Then

1 _ 2 ,
Jo, w das GEyo, wiw) MR |Vol'ds, e HY(Q),

where M =M (o) is a constand,
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i e

Proof. It suffices to prove it for all continuously differentiable functions. By
zero continmation we can regard « as a fune-
tion over the square [—R, R]?. Because R>>ca,
o1, any two points in Q; can be connected
by a broken line in £; which consists of at most
2 M segments parallel to one of the coordinate
axes, where M =M (cr) is a constant (Fig. 3).
Then -

w(€ax, mu) —w(&o, )

[ —3—’“-"-<§n, mdn+ [ 20 (¢, m)ag -+

o

fn
+f, S mode.

a1

Fig. 3

Square it and we obtain
w(gﬂf: T?H)E_I_W(SQJ ﬂﬂ)ﬂ_gw(gﬁj ??H)w(gﬂ': "?U*)

<2M {( . 37} LLNC '-'?)d’??) (r TE 2z (&, ﬂi)d&) i +(J fus OF (E’ nﬂ)df) }
ggM.ﬂR’{J—_R[%;E(fm ﬂ)]ﬂdnjuj [ g(f, )] g+« +J (S, u)} dg,f}.

By integrating from — R ito R successively with Tespect to &, mg, {-’1, 1,0, Ex and
7, We have

(23)”{2'[”{ o® o } —2(2R)**-( L dm)ﬂ <2M2(2R) XU+ Lh |Va0|? de,

i.e,

1 < 2 nJ‘ 2
b W de < (QR)E(J‘n.de) +M?*(2R) o | Vo |2 de.

':[‘he proof ‘1‘5 complete.
Now we can obtain the main result of this paper.

Theorem. If u€H'(Q)NH"E(L,), k>1, B>ca, 0>1 is a constant, then

e 1 a N
IW—%N l] Hy /P, U N1 ( R) ”’”'“k_%.,rﬂ:

where C és @ constant independent of N and R.
Proof. Let |w|ps=[D:(w, w) +ﬁ” (w, w)]?"T By Lemma 2, we have

HW"L-(E;}JP.—lﬂfﬂw—ﬂﬂmam anf{@é)ﬂ( (w—c)da —i—Mﬂ(QR) " -l‘?w].ﬂtim} |

=M?*(2R)? | wl3, 0, YwEH(Q).

T]:len

|3 20rr,< (LHAME) [0]3,0,< (3 +42° )R ful3e, Vur€ HY(),

i.e.
Ilwu H‘{ﬂi}fP-ﬁonR ” w " D%y Vwe H? (Q‘)j

where
L 4
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1

0= ﬂ_}aﬂ 1 4M9)I.

Because ¢ is a harmonic funciion in £, we can lef

’Hr(‘?', 8)= _Zj r,r'll_::l 3“!&, Gy = g, 'Hr='=0, 1: 2: W

Moreover, let
(¥ —w)p. =" b b ,=b, =n=01,2,--

From (7) and (8) we obtain |
Dy(u—u¥, v)+D(u, v)—D¥(u¥, ») =0, Yo HY QD).
Taking v=u—u*, we get - | .
l6—u? |2o=D;(u—u”, u—2u¥) +D¥ (w—u¥, u—u¥) = D¥ (u, u—u*) — D(u, u—u")

=lr""r"" i  moos n(6—0")u(R, 6") [u(R, 9) u(R 8)]de’ o
SO G n=N+
aq|? \? 3
2 Ln|§+1 In’ R'" EHQ(Q En.l:aN+1 |ﬂl| R4 ) [D(’Lﬂ o 4 1"

Because ¥ —u ig a Barmonic function in £;, using LLemma 1, we have

s 1
N __ 2 \/2 a |m"|5 Zz ¥_
Hﬂ- NHDH‘@ \/0_2“1(235 En|§’+1 [n| - ) I'H’ |10,
V2o g’
<J25(em 3, Inl—gme) 1v"—uloe

Hence

="l incarin, <OR|u—u | <OoR Y2 (20 52 o] L)

1
‘\f’ g 1 R 2% —1 |”ﬂlﬂ A
QQGR \/ﬂ' — \/.:;NI" (R) (ZW‘I Inl§+1 |ﬂl )

V2a0 1 a
QGG\/HH_:I_ N1 (R) ““Hn—%,rﬂ:

i.e.

1. {a\*
H’EL'—'MN"HWH‘HP.’&QO Nn — (R) II U ’li:—-%- r,

: . :
where 0= 2(4a0 Mﬂ+1) =0 (m o) ig a constant independent of N and R. The
a(o?—1)

proof is complete.

This result reveals the relationship between the error and the approximate
grade N of boundary conditions as well as the radius R of the artificial boundary.

It should be pointed out that, becanse (4) and (b) (or (10)) are not equivalent
when the Fourier expansion of (R, #) confains some high frequency terms corre-
sponding to |n| >N, the above result is only the error estimate for the approximate
integral boundary condition (4), not that for the differential boundary condition
(B) or (10). Once (4) and (5) (or (10)) are equivalent, they are equivalent to the
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T ———— LIPS

exact boundary condition (3). Then u" =u.

In fact, the approximate integral boundary condition (4) has been implicitly
nsed in the coupling of the canonical boundary element method with the finite
element method %%, When we calculate the canonical boundary element stifiness
matrix by the series expansion method, we always only calculate the sum of finite
terms of every series. However, in those cases we have chosen a very large number
for N, for example N =200—400. From the above theorem we see that, provided
R>>a and N is a very large number, the right-hand member of the estimate is very
gmall and can be neglected. This has been indicated by numerical computations™:*™
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