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Consider the initial valne problem . . = . - -
%"f @ v), ¥E)=9, (1)

where #C R, y, fE€ R". 1f the solution of the differential eqﬁa.tiﬁn is approximated by
polynomials, then general linear methods, such as linear multistep methods and
Runge—Kutta methods, can bo constructed. When one approximates the solution by

rational fractions, there are some nonlinear methods™ .
In this paper, we propose a new. olass of nonlinear methods. Set

; _ _ o
| Yo=2, fol¥o, Y1, =, Yy =1, "~ " (2)
Y = (yﬂ: Y1, ** s ’yn)T: -F= (fﬂr fir .“'!»fﬂ)r,'
Then (1) is converted to the following initial value problem .

_——‘g _F(Y), Y(E@®) =Y. T (@)

Obviously, the solution ¥ (@) is a curve in. R"+!, By means of Frenet frame and the
normal representation of curves, we construct a olass of one—step multistage
ponlinear methods. According 10 the absolute stability, a stepsize eriterion 18
obtained. It shows that the stepsize should be in inverse proportion 10 the
survature of the solution ocurve. It reflects the geometric nature of the solution
curve computed. The stepsize oriterion applies to nonstiff problems, especially to
stitt problems. Numerical experiments for a gtiff problem in reaction dynamios
have demonstrated the efficiency of this olass of nonlinear methods.

§ 1. Normal Representation of Curves

As in differential geometry, the normal representation of curves usually doed
not exceed the third order®. To obtain fourth order nonlinear methods, one must
expand the curves farther. Let the curve ¥ be parametrized by the aro length s:
Y (z) =Y (x(s)), which will be denoted as ¥ (8) too. Let the arc start from the poinb
where the Frenet frame is egtablished. Then, in the neighborhood of the starting

point of the arc, we have
¥ (5) =¥ (0 +s7 (0 + 5 ¥ () +ZF © + 27 (0) +0(#). @

By the Frenet equation
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the unit tangent vector
Sl s,

where

I_= { g-f ?}M; - (5)

= S 9f =
U - ay! fh U (u'l): U, ? u.“)'!',

) u2 1/ | n
p_{j J’} ? g"gﬂfﬂh

x=~/Pp?— g% /I3, (6)
The expresions for unit veotors e; and ¢, are not listed here ag ¥ and o do not
&ppear in the ensuing computations, Thus,

| -#Ei'f"ﬁ'ﬂaﬁﬂ'g“ —'ﬁ/?ﬂ 62""’1/# i}:

and
—Teéqy +ﬂ'ﬂi =éﬂ = 'x—:!.r— {? ""'3#?.{'51 - (Ha = ??) &q — (QFET‘F#‘E')GE}.

Substituting the above expressions into (4) we obtain the following result.
Theorem 1. ILet ¥ (s) b6 a curve in R (n>8), parameirized by arc length s.
Then, in the neighborhood of 8=0, the curve has the Jollowing normal representation

du y
Y (s) =Y (0) +[3—%xﬂ——£#ﬁ}a+[£ PN 3 ta (:J.a:-—-g-.:“—a.mﬂ)].-;-.ff

8 2 6 |
8° e . 8!
+[—6—- x'r+—§z(2ﬁs-r+xﬂ]ss+—2? xv0e,+0(s"), (7)

S 2. First to Third Order Schemes

1) Omitting s* and higher order terms in (7) and substituting & for s, one gets
the first order scheme |

" yo+4ys Tl [T T ~ fo 7l
4

{ ﬂi‘l: Y1 - !{1 I+ f. in (8)
: :—' "qu+f1+'”+f2“ 3

L watdy, | |, .

This is an analogue of the Euler polygon method, but here %, instead of being ap
increment in & as usual, ig the stepgize of movement along the tangent to the
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solution curve. It is an one—step nonlinear explicit scheme because the right-hand
functions f;(j=1, 2, --+, ») appear in the denominator as summands within a
radical sign. | § 3

2) Naturally, by neglecting s* and higher terms in (7) one gets the second
order scheme | | | | o

Y 4+4Y =Y+ F-—I—%_{U—%F}. ' (9)

It could be geometrically summarized as “go along the tangent and correot along
the normel”. This is a one-step nonlinear second order explicit scheme with
derivatives because it involves not only the right-hand functions but also their
derivatives. o Tl LT

Furthermore, on the basis of (8) we could construct the following two—stage:
sclieme |

C yo+AYo B ™ fo™ “fo - .
wohags | L% L AL AL (10)
: ¥ 2_ A 1 :
L. yﬂ""‘d@fm'f_-ﬂ'-. o yﬁ o il fn'_ : ._f;__

where AP
| . f:ﬁff(‘yﬂ_*—hig_: 'y:l_l-h _fi,:_”j y“-l-hgfl)’
M8 e BB B T R TR ?’.1 g = i & & X! IR S
= " *2' o 7 U
Theorem 2. The on&;sisp two—stage nonlinear wphcmt scheme (10) is a second
order scheme for the initial valug problem. (8). . " ' ,
In fact, (10) can be written in veoior form as

P '{&1 Pl F}

L P eR@@tse), PoIE O
i gk z~;U-—_l-_t’)(atf‘”’)
and ;
1 .« '
& Cai g 3F+O(32)!_
Henoe B BB S | sl g
| %F*=%F+s{%U——%F}+O(sﬂ); o §
Thus LA y |
2
- dy=se+ _-si_;_ceg +0(8),

and (10) is a second order scheme. ok
3) On the basis of (9), we construot the two-stage scheme |
TR IRE T ANES S8 JE S LR S of | SR
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where the evalnation points are chosen as iy €10y < . eTpw

t&;=uj(yu+h_,€_¢}T, y1+&jf_’___, Yo+ R J;n )’

=2 e
Theorem 8. The ons—step two—sta ge nonlinear explicit scheme with demwm
(11) is @ third order scheme for the énitial value problem (3). o | w
- By arguments similar 0 those used in the proof of Theorem 2,
M | ;

MOI‘EOVGI', “.. D BN i, S

L]

® =x+8%+0(s?) and é-—'*ﬁn-“-l?#(.— 261 - vey) +-0(5%),

50 that

%" 63 = 2€a+8{ — %1 1 seg - sxves ) +0(8%).
Ay = se, +-§-{2er +ael) = (3“%#2)31 +(i;;___x +§ rfc)m—% xves+0(s%),

- L

_E

and (11) is a,third order schemé.

"+ '§3.-Fourth Order Schemes .
In order to derive fourth order sﬁhemeﬂ, We approach the Problem by extending
t0 the one-step three-stage schemes and by refining the evaluation points to

2 ; : o y ! i
Y+p331_|_ (P;) XEg, nggl. ;-':.f. | £ _. E

1) Let @, 8, v be three combinational :}uef_ﬁﬂients, ; and %oxj:ust;uct the ithrue—
stage scheme = it aw & wea | | .
gy e _ i ' ' :

7 b dy=ses+ _32_2 {a#{J’ﬁéfj %_B#fﬂ}eém +f‘}f"‘3;’é§33}, . (12)

v ; |
- ! i _ e - : " : :
. w 3 e .

where A .
W 8 Lo x=%(Y (), ea=e5(Y(0)), *°

and

o ayghd CaATE B
x“?#ge(Y(ﬂ) —l;p.;se;—!—_—g&;)— x€z),

e%i}=£2(F(0)+p‘SE1= (Ej?s),-.'#gﬂ)‘ i=112: 3'.'- I

Becanse Rl s 5 4 I
x Vel = nea +pa( — ey + ey tumes) 1|

N2 e | ; ;
B Bty (i Y eu b i e Entodg},

by comparing -g;{axma&lf—l— Bx'Vef? +yx e} and.-the expression

LYO+EP 0+ 70

r a - .': 3 - W
s . : d
[ ad a " 1
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LS < ==

wo geot the following relations: »
at+B+v=1,
| -
e+ puB+vy=-7, (13)

| | &’m+uﬂﬁ+v“7=%-
with A =11, p—pg:i}:=p3. By Py o

Theorem &. The one-step three-stage nonlinear eaxplicit scheme with derivaiives
(12) is @ fourih order scheme for the initial value problem (3), éf and only if the
coéffioients o, B, ¥ and A, [, ¥ satésfy (13), that is

%(M-v)—m—']g"ﬂ
(A—p)(»—2ry °

e

L. cun e A g,
5 (v +A) —-vﬁ.*--gﬁ (14)

B~ wm—»
g - ,
’ 5 (A tu)—Ap—g
4 (u—»)(»—2)
2} We have found that by setting =0, yw=1/2, y=1in (14), one gets a=1/3,

B=2/8 and y=0, which is a special one-step two-stage nonlinear fourth order
explicit scheine with derivatives: . - C ome 4B o, & ¥ 4, 3

r'-wﬂ%'\-- g% [ fo”
: yi'i';ﬂ’yi " 3{1 +_}IL_ f:i
Lyatdye d Lol LSl

B Uo | _fu— r Tty _?u--
k2 1] W ol f1 1] 1| ¥ Ja
+& 1| 7 ._% : L+2 fil --% : _U . (15)

N LS bl L L% L..?n
where f; and u; are evaluated at point

(vorb Lor B (S foso) g B+ (= Fa)s s
+h L B (E-51) '

{37 - e

We propose: that this fourth order scheme be used in actual computations.

" § 4, Stepsize Criterion

Now, we shall derive a stepsize criterion. for (10) and (15) according to the



No. 4 A CLASS OF 'NONLINEAR METHODS 'FOR:0. D. L. s 325

absolute stability, For this purpose, consider the tegt equations

4 .

%‘ = —0d}; — BYa, (16)
%zﬁyi_.wﬁ:

where a>0. For convenience, denote y,=2, Y1=Y, Ya=2. According to (10), after

the #-th step we compute

® /S |
— Fs _ _ ]
y' Y 1+ (@ +5) (g + z o — B2y
and obtain | - s
Tus1 | [ @ | | : . | *‘ 1
Yurr (=| Yx +g T+ (aﬂ-l—}fs*ﬂ) o + ?j} ~— oty — B2y
z
rt Lat's 0wy voAmi | BYy—uiz, -
» T ?3, _ 3 1 &
; P o e e
Vit@ @ | YA
p—_ | F IS S A rear f]-
Absolute stability can be reduced to the requiremenst:
TR R . 17y
Presently, E | | i *
2- i
y§+i+2§+z=(ﬂi+5§){l 2;‘ h- a”(lz :_1) hﬂ} O(ﬁ?),
where i |
z“""f‘ll‘i‘(a‘a"’ﬁﬂ) (g +25). | | -
To ensure the ?alidity of (17)_? the stepsize 2 must be rés%ricted: h< u:.(Igf—l)_'

Making use of the inequality between the harmonioc mean and the goeometrio
mean, we find that the curvature of the curve at point (@, 4, 2,)

2 g e T a__
= SV VI > 2D,

Thus we obtain & criterion for selecting stepsize (a stepsize criterion): The
permissible stepsize

4012 —1) : |
e = Ty 48
For scheme (15), the same stepsize criterion is derived.
~ Theorem 6. By the absolute siability, the one—step nonlinear second order schema
without derivatives (10) and the one-siep two—stage nonlinear fourth order scheme with
dertvatives (18) must satisfy the stepsize eriterion (18). © - - |
From (18), the stepsize should be in inverss proportion to the eurvature of the
curve. Being a manifestation of the geometric nature of solution curves, this
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e = R oy —

g - —ae

criterion applies to both stiff anid nonstiff problems. This approach js more natiiral
than the variable stepsize strategy adopted so far for stiff problems. Also, the one-
step methods are especially flexible in variable stepsize procedures,

§ 5. Numerical Experiments

Examine the following stiff problem in reaction dynamics:

f;; —0.01= (0 01+u.—1—w)[1+(u+1000)(u+1)],
‘;’: = 0.01 = (0. Ol—l—u—l-m)(l-l-*vﬂ)

u(O)——-w(O) —0 0<<1<5100. |
The system is fairly stiff at the very beglnmng of the process with a stiffness ratio.
8=10°, which is later reduced to approximately 10°. When the problem was solved
by using the classical Runge—-Kutta method, the computation blew‘ up after two
steps with a ﬁxed gtepsize hyy=0.0056. Tlre results Gf the computation are tabulated
in Table 1, with Zu,=0.0005, 0.001, 0.002 and 0. 0025 regpectively™,

5 &2 Tahle 1 Results usirg Runge-Kutts method
N N Te s )  u(100)
0.0005 ° —0,99164207 . 0.98333636
0.001 & —.0.99164207 0.08333636
0.002 . —0.99164213 0.08333643
0.0025 ~0.09164243 0 .08333677

On applying the fourth order nonlinear method proposed in this paper, the
permisgible stepsize determined by the stepsize oriterion might be quite large.
Theretore, in order to ensure the acecuracy, the working stepsize was constrained by
the maximum gtepsize, Aworsiog=IN{Ansx, Apermt. Satisfactory results were obtained .
when cormputation was carried out with AL,,=0.001, 0.005, 0.01 and 0.02
respectively (see Table 2). :

Takle 2 Results using nonlinear method

hma: % (100) 2 v (100)

0.001 ~0,99164207 0.98333636
0.005 —0.99164206 - - 0.98333635
0.01 —0.99164204 0.93333634
0,02 - —0.99164196 0.98333627

The numerical experiment™® showed that except for a small starting interval
this stiff problem could be solved with Aperm 28 Wide a3 0.05 in an extensive range.
But in the small starting interval, high stiffness goes with large curvature, for
instance, Ayerm =0.0001 when £=0.0072. If the computation should be carried out
‘at these places by a stepﬂiée greater than /% ., the provious errors would be
“amplified” and propagated, affecting the accuracy of the outcome. By means of the
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stepsize eriterion, this shortcoming of the fixed stepsize approach has turned out
clearly. Although Ay;=0.002 or 0.0025 is very small globally, it is still
inappropriate to the starting interval with high stiffness, resulting in certain
errors. In fact, adopting the variable stepsize strategy defined by the stepsize
criterion in the starting interval and using Ag,.=0.001—0.02, which was much
larger than 0.0025, over the remaining wide range, we were able to obtain fairly
good results. This class of nonlinear methods based on Frenet frame is very effective.
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