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Abstract

A class of methods for solving the initial problem for ordinary differential equations are
studied. We develop k-block implicit one-step methods whose nodes in a block are nonequidistant,
When the components of the node vector are related to the zeros of Jacobi’s orthogonal polynomials
PiL(u) or P9 (u), we can derive a subclass of formulas which are 4- or L-stable. Th: order can
be arbitrarily high with 4-or L-stability. We suggest a modified algorithm which avoids the
inversion of a kmXkm matrix during Newton-Raphson iterations, where m is the number of
differential equations. When %==4, for sxample, orly a couple of m Xm matrices have to be inversed,
but four values can be cbtained at one time.

’
§ 1. Introduction

We shall study a class of methods for solving numerically the initial valne
problem for ordinary differential equations. These procedures, termed #-block
implicit one—step methods, advance the numerical solution by a block of £ new
golution values at one time. The nodes of a block can be nonequidistant.

Beoause implicit one—step methods have many merits, such as self-starting,
easy change of steplength, high acouracy and good stability, they have attracted
much attention from a number of authors, e.g., Butcher'®?*, Shampine and
WattsH% ), Williams and Frand de Hoog™®! and Bichart and Picel'!. However, the
block methods with nonequidistant nodes have not received as much attention.
Shampine and Waitts"®™ presented a different approach based on interpolatory
formulas of Newton-Cotes type, whose block methods for sizes k=1, 2, ---, 8 are
A-gtable, but for #=9, 10 are noi. Bichart and Picel™ also had a detailed siudy of
block implicit methods which are stiffly stable at least through order 25.

In this paper, we continue the study of general £-block implicit methods with
nonequidistant nodes. The formulas developed by Shampine and Watis™ are
involved. If the components of a node vector are related to the zeros of Jacobi’s
orthogonal polynomials PP (u) or PitP(u), we can derive a subclags of formulas
which are A— or L—stable for arbitrary sizes #. The A-stable formulas are of order
k-2 and the I—stable formulas are of order £+1 for 2=2.

The fatal defect of the implicit one-step block methods is inversion of large
matrices during Newton—Raphson iterations. In this paper, we present a modified
algorithm, which comes from a 4-block implicit method, and only two ordinary
matrices need t0 be inversed for four new values.

* Received November 24, 1984.
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Some comparative numerical results are presented to show the efficiency of the
modified algorithm.

§ 2. Block Implicit Methods with Nonequidistant Nodes

We shall be interested in obtaining a numerical solution of

y'(@)=f(2, 9), y@)=n o<s<p, (2.1)
where we make the usual assumptions that f is continuous and satisfies
|f(w, ) —f(z, ») | <L|y—¢ (2.2)

and on [a, 81X (—oo, oo) the existence of a unique solution y(w) €C0'[a, B] is
guaranteed. We shall assume that y has continuous derivatives on [a&, 8] of any
order needed rather than make specific differentiability assumptions.

Now, let @,,i=,+oh, where n=0, k, 2k, -+, 0<e<<k, i=1, =+, b—1, og=Fk
and a,%a; when 4%, Define a= (ay, a3, *-, ox) 7 as a node vector. Let ¢; denote the
approximation of y{z;). The formulas we shall study may be put in the form

Yo o= a®+ABF (Vyo) “hfsd, n=0, k, 2k, -, (2.3)

where f:i'=f1mh y!): a’= (1: 1; Tets 1) T; Be= (bﬂ)ﬁxh b= (biﬂ: ™ bkﬂ) T; Y=
Wart, * Yner) Ty £ X no) = (Far1, =+, Joszx)” and the initial value gp=n. Equation
(2.8) represents a system of non-linear equations for the new values which can be
shown to have a unique solution if % ig suitably small. In practice we may have to

presume the existence of a solution.
With the block implict method (2.8) we associate a linear differemce operator

vector ¥ defined by

FY (2; a); k] =Y (@; a) —y.a®— hBY ' (#; a) —hy (2) b, (2.4)
where ¥ (#, a) = (g(@+osh), -+, y{w-+ah))”. Expanding the function 9 (@ +ah)
and its derivative g (¢+a,h) as Taylor series about # and collecting terms in (2.4)
give |

LY (z; a); B] =y (@) co+hy (@) ey e+ hY P (@) cqtee, (2.6)
wheroe ¢q are constant vectors. A simple calculation yields the following formulas
for the constant vectors ¢q in terms of the coefficients @, B and b

o=0,
i Dol (2.6)
L i = T e

where a*= (a3, *--, ai)".

For formula (2.8), we can state a2 convergence theorem.

Theorem 1. Supposs we have a k-block implicit one—step method defined by
(2.8), and let us assume the existence of v and 0<g<¥ such that the linear de¢fference
operator vector ¥ satisfies | L] =O0(h**) and | (L) =0 (R°), where (F); 8 the b-th
component of . Then the method is convergent with global error of order h® where
p=min (v, g+1), that i3 |Ya.—Y (z; @) [=0(&*) for each n=0, &k, 2k, -+, such that.
@, < B, and the method ts said to be of order p.
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The proof can be found in [10]. To obtain a higher order error, a few remarkg
seemn noteworthy: First, we had better take ¢ ag large ag possible, Second, advantags
should be taken of formulas which are more accurate at the end of the block than in

the interior. E
From formulas (2.6), for a given node vector @, we can choode B and b as

below (we restrict n=/%+1),
{(_31.—_330—-6=0, . -
o' —qBa' =0, ¢=2, +, k+1.

A= (@, a, -y @),
V =diag(ay, **-, o), (we have Va?=qgi1)
| Do=diag(2, 8, +-, k+1).
Obviously, 4~* and ¥~ exist. Following (2.7), we have

B=V2AD;'A-y 1 .
{bual—ﬂm“. | 2.5

If we defineg=(1, 2, «--, ¥)7, the B and b determined by (2.8) are then the
game as those chosen by Shampine and Watts"), Tt can be proved that the
‘associated block method converges in order k+1 for # odd and in order k+2 for %
even, and that for =1, 2, --., 8 the method is A-stable and for k=9, 10 ig not.

When formula (2.3) is applied to the nsual secalar test equation §' =Ay, it iz of
the form

(2.7)
Let ke -

(I—-RB)Y s, s=yn(a®+7b),
where A=7AA. Letting | |
o(h) =(I~hB)1(a+hb), (2.9)

‘we have &
qu=m(h)yn* | (2'-10)
In order to obtain the explicit expression of z(h), we introduce the polynomial
X
p(2) = (2~as) (2—as) - (B —a) = 33 (p9(0) /1) o, (2.11)
Lemma 1. If B and b, the coefficients of the block method (2.3), are given by
(2.8), we have ' ) |
K a0 i
W(EJ ""E P{h‘ E} 'Tih‘, . (2.12)
where | |
rom (B—i+1) %9 (0) /(h +1)1 (2.13a)
. |
{P{=§] T4-4a'/8! §=0, 1, -, b, (2.18b)

Proof. From QOramer’s rule, we can conclude that #(h) has the form of (2 12).
ko .
‘Multiplying by ,_20 rih's (I—AhB) on both sides of (2.12) from left, we get
k _ X - ko B
‘}F:I: P{h‘.—' B ‘5_‘[_,} j};hi'l-_i —"‘-2{} T h‘ﬂ0+‘2{' 'ﬁh‘-}-ia. _ (2 .14)
= 4= ' §= =

iEquating corresponding coefficients in Af, we evidently obtain
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Po=rea®, . .« (2.1ba)
Bpi_i—m +fr¢_.1b | (2.15b)
—Bp,,—r;,b g=1, s, k. | (2.160)

Without losing generality, we put ro=1. Then we have mo=a’. This implies that
(2.13b) is true for 4=0. Suppose it iy true for all indipes through 1—1, ¢<<k. By
(2.156b) and (2.7), we have

g1

=BP:—:1 +ra® +T¢—1b=B 2 Ti—1—0 /3' +Tiﬂ ‘|"'Ti—1b

= E Ti—1-sa"11/ (s +1) | 4-ra® Lr,_ia =2 ri_s@®/81.
Thus (2.13b) holds for i<k. Substltutmg the P in (2. 150) by (2.13b), we have
- B Z s’/ 8! mrk(ﬁl Bm“‘)
and from (2.7), we get
zﬂ ro s/ (s+1) 1 =0, (2.16)

. ' ' &
Denote u,= (k+1) !7ry_,/(8+1)! and (2.16) becomes 3 u,a*=0. That is, a;, 4=1, +--,
- g=10

k
k, are zeros of polynomial 3] u2® Since u;=1, comparing with the polynomial ¢ (a)
()

defined by (2.11), we find
Uy=@P(0) /38!, (2.17)
Hence | |
ro=(k—i4+1)p%Y0)/(k+1)! |

Writing (2.10) in component forms, we have
Yosr=Eu(R)Ya=&E" (R0,

Unss=E(R) U= (BYEE (R, =1, v, k—1,

where £,(h) is the j~th component of the veotor z(%).

Definition. The block implicit method (2.8) is said o be absolutely stable far 7
given h if, for that k, |&,(h) | <1. The region of absolute stability is defined as a sef
= {E] |Ex(h) | <1}, A block smplicit method is said to be A-stable if S>O0-.

§ 3. High Order A-stable Block Implicit One-step Methods

- Once the node vector ¢ is given, we can construct a block implicit method by
(2.8). But the problem is how to choose @ 50 as to optimize the block method, that
is how to raise the order of the method as high as possible while keeping A-stability,

We quote a general definition: A rational approximation R(z) to ¢* is said to
be A-acceptable, if |R(z)[<1 where Re 2<0. It follows immediately that the
A-stability of a one-step block method depends on the A-acceptability of the
approximation §£y(R) to . It i3 known that if R(z) is a diagonal Padé
approximation to ¢*, then R(z) to ¢ is A-acceptable (Birkhoff and Varga ).
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The explicit expression of [£/4]Padé approximation Py(2) to ¢ ig given below:

Q:(2)
kBl (gt+k—3s)!
Pa(e) = E (k—8)! (g-+k) sl ¥ | L
u N 5!(}""3‘_3)! | ’ | | _ |
OR e e e e T
Now, we introduce Jacobi’s orthogonal. polynomia,ls on [0, 1] |
8B (o e (=1)® | —
F(@) n!G-_;HuH(l—m)“a;B d:v“ L
—— n+n0n+ﬂ' I(m 1)!1-—! | | (3 3)

8=0 O§n+u+ﬂ

where P"’*m(m) is a monic polynomial and assnmated Wlth the weight function
(@) = (1—2)%". The zeros of P&™®(x) are real and distinet w:Lthm the interval
[0, 1]. Hence, it is possible for us to define ¢(w) as below:

p(z) = PED (a/k) - (w/h~1). (3.4)
Lemma 2, £,(R) i a diagonal Padé approvimation to 6% if the components of

the noda mﬂtnr a age gw&n by zeros of poigmmml PP (z/k)(z—k) tn magntiude
order. o

Proof. TFirst, we present two equalities about combinational nnmbers
j_zﬂ O’ Ok_f m+n: | : ' (3-5)

u r0, u=%0
—1 ’Cf;={ * : 3.6
:__=Eﬂ(‘ ) 1, u=0Q. (8.9
(3.4), (8.3) imply
-1 0305+1 k—=n

() = PP (o/k) (o/k~1) = 33 DTS (—1)th10} 4

£=0

=a;"—l—i (_1)fkf(’§. OE?E" G;{;-.)w"".
Jem] : s=0 9%
Then, (2.13) and (3.5) yield |
B—i+1)1 & orostt FRRT Nl
=( l)fk’ ((kil)? e OIE-HI 0"’7"'3 ( '1)’ (21')'51 Zuh—i Il—_'i'l'l
FURD s o gps BL(2E—1)1 *
@Ry 15T o (~18 (%):j:(k-——f)z'

Comparing with (3.2), we get

— (~ 1)

k = | - .
E}r;h" = Q. (kh). - (3.7)
Then, (2.18b) implies R N

TRV - I PO R :kr(2k-—-+s)l -
e St 2(_ v il (Io—.?—i—s)'(%)!(:—s)isl

. (2}:5"_ )I s '
kf (Qk)jl ; ( 1) O L—ll

Moreover by (3.6) and (3.5), we have
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(o=t B S (—1y01 S o0

(2%) ! .
- (2(}92 k)jl)' E 0:2( 1)#0#0!—-#—!
— (2(}‘72]‘).?)' #—200:01-3(2( l)tU,_.)
(2k—3)! A (2k—g) k! .
B O TR e T T T

Comparing with (3.1), we get
y e s, | .
(3 ph') =Py(kh). (3.8)
=0 R

Combine (3.7) and (8.8) and the required result follows. |}

Theorem 2. The block implicit method (2.8) is A—stable if the node vector a o8
defined by Lemma 2 and B, b are given by (2.8).

The remaining subject is the order of the methods. We first present the

following lemma.
Lemma 8. Assuming P,(z) is a polynomial which inferpolates f at the nodes
oo=0, ay, *+, o, the componenis of the node vector, we have

| [ f@)do= [" Pu(@)do+RLS,

awhere
R[z]=0, 3=0,1, .-, 2k -1,

Proof. | By the theory of interpolation, we have
X
RUf1=|, /1, a0, -, a] -wa(a)da,

where f [m oo, ***, 0] is the difference guotient and
wy () =z (B—0ty) (B —ay) =2 (T — k) 1PV (a/k).
When f(2) =2, §=0, 1, «+, 2k—1, the difference quotient f[z, as, *+, o] i3 2
polynomial of degree <<k —2. By the fact of orthogonality of Pi:i(#/k), the result
follows. |
Since the initial value problem ¢ (@) =f(2, y(2)), ¥(@) =ys i8 equivalent o
the integral equation

9(2) =y..+j OO
we approxlmate the integrals in |

y(mm) :u.+j f(t y(t))dt, j§=1, -, k

by mtegratmg the A—th degree interpolating polynomial which agrees with ¢'(z) at
Za, Tasi, ***, Tnsxe Lhug, we obtain a formula of the form (2.8) which is of order
k+1. Frnm (2.7), (2.8), we can conclude that the method of order k-+1 is unique
for a given node vector a. Hence, by Lemma 3, we obtain |(%);| =0(A**1). That
i3 (Cpia)x="0 for =>2. From Theorem 2, we obtain

Theorem 3. The block implicit one—step method (2.3) s of order k+2 for k>2
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and of order 2 for k=1 ¢f the nodes are determined. by Lemma 2 and the coefficients b
and B are determined by (2.8). We denote them as ABIOS M’s for short.
Jacobi’s orthogonal polynomialy P(z/k) of k<4 and their zeros are given

below:

| Pil,l}(z/zj_—_Lz o 2’ a1=1_,

P45 (z/3) #—%— z”—%-ﬁ—%‘, ai,__g-"- g—(l-J )

P (2/4) = za—-?%- zﬂ+-59§z—-1—ﬂ-, oL.s =2(1--J??-) =2

The coeflicients b and B for Iv%_é_. are displa.yed in Ta.ble 1.
. Table1l Coefficientis of ABIOS M’s for k<4 .

-1 b=|] -2
b=l b=(2 A E
B s 4
1 - .t B -8 =
kw2 b=|" - ‘B=| :
N B 4 1
i 9 83 "3
11 ~'5 Fa _wm L ow o P
40 = 40 _ _ — ot _
_ (25—~/5)/40  (25—185)/40 (—1++/5)/40
kw3 b= %-iﬁf_ Be| (25+18/F)/40 ¥254+~5)/40 (—1—A/5)/40
" _ 9/ - B/4 o A/4
L 7 | | _
C17 .8 [3°7 © 49 1 /8 82 128 3 23( _3 .3 A
70 70V 7 | 90 WYT A S 105 Y7 90 0 T0Y 7
1 49+ 3 32 o 49 J_ S T
80 - -} - 190 " a8vY7F g . 80
k=4 b= p . _
= orf el B FE | _,49+23J3 82, 128 /3 :—*9*+-_1_J 3 _8.'3 (3|
0. 70N 97 |, . o[.90 3ONYT 45 ‘ 105 7 90 20V7 0 0V 7 |
1 | 49 T 49 1
1 5 ’ 3 a5 %5 5 5

§ 4. High Order L—stable Block Implicit One—step? Mei:hdd;

The class of maximum order (p=k-+2) methods have been found to be
A-gtable for arbitrary %. One drawback to these methods is their less than ‘deésirable
asymptotic behavior. In particular, as A->o0, [ (kL) |—1, a point on the boundary
rather than in the interior of the unit disk in the £—plane. In order to avoid thid
esymptotic behavior. Bichart and Picel® presented a subolass of implicit one-step
methods of order p=F% with b=0; the nodes aroe equldlstant yot. These methods are:
A-stable for k=1, 2 and stiffly stable for k=8, «--, 28. But if we make use of the
advantage of nnnequ1d1stant nodes, - we can easily construct a subelass of block
implicit one—step methods, which areé of order p=%-+1 and L—sta.ble for a.rbltrary k.-

First, we put =0 in (2.8), which leads to the form
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Yo=Y, ~AB F (¥ ,.0). (4.1)

For a given node vector a*, the largest value of q in Theorem 1 which can be
reached, is k. That is, by (2. 6) let |

G —-sB* LR _0, g= =1, 2, -, £. (4.2)

Making use of notations in ‘Seotion 2 and assumlng Di-—— diag(1, 2, -, k), we
obtain. : :
B =V*A'DI1A"“1 - (4.3)

When (4. 1) is applied to the scalar test equation ¢ ==Ay, it reduces to the form

Yll ﬂﬂm (h) ‘yﬂ:

(B =(I2RBY % © 7T (4.4

Definition. The block implicit method (2.3) 48 said to be L—-stwble iof @ r.zls.
A-gtable and |£,(h) |—0 as Re hA— — oo,

A rational approximation R(z) to ¢ is said to be L—acﬁepta.'hla if it is
A-acceptable and satisfies [R(z)|~>0 as Rez—>—oco. If &(R) is a [k— 1/k] Padé
approximation to €**, £z (h) to € is L-acceptable'™, and also the blook method is
L—stable. ‘

The following lemmas dnd theorems are Eﬂmpletely parallel to those in

Sections 2 and 3. We only display them without proofs,
Lemma 4. If B, the coqﬁic@mt of block method (4.1), is given by (4 3) we have

where A=Ak,

k=1 - " _
@ (B)= S ik Bk, - 4.5)
where 5 | | | |
k e‘;____@ﬁkjﬁ(o)x/k!j £=g, 1, e k6,
p:"-gé.-?f_ﬂa**'/s:, im0, 1, = &—1.
where B

P (2) = (z—af) -+ (2 —a).

Lemma b. . £5(R) isa [k~1/%] Padé approsimation to e if the components of
ﬂw nocde ‘vector & are givewn by the zeros of polgnomwl PE‘_“? (mf/k) (w—k) 4t magmmd&f
order. "

Theorem 4. The block implicit mwthod (4 1) is L—mble if ths nod& veclor @* 48
dsﬁned by Lemma B and B* is given by (4.8). -'

Lemma 6. Assuming Py(2) is a polynomial fzmtarpolwtmg J at the nodes ay, -:-,.
o, the components of the node wﬂctor G, we },mm

j F()do= j P,,(m)dm+R[f], .

R[2']=0, for_? G 1 , 2k —2.

, . Theorem b. The block implicit one—step method (4.1) iz of order k+1 for k>3
mzd of order 1 for k=1 if the nodes are determined by Lemma b and the cue_ﬂicwnts -:w&
determind by (4.3). We dendte them as LBIOS M’s for short. . g ¥

Jaocobi’s ﬂrthog&nal polynomlals .F‘“l 2 (z/ k) of b-@l an.d their zeros are glVﬁﬂ”ﬁ
helnw G B w0 B bR w8 g TR b BELE B s e My ;

where
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PPty m oL, ai=Z,
P (2/3) =—-1-'- 23 ]‘.15 2 1—]6; ﬂ1.ﬂ=—(4i ’\/_'):
1

€1,0) ~= - 3 S
PE(2/4) 2 T2’ Tt

a:=-=_7_(3+2ﬁ cos( L2 ), -1, 2,3,

where #=0c08"(+/ 2 /10). That is
ay=0.3543518378, as=1.6837867458, a3 =23 .1506837847.

The coefficients B for k<4 are displayed in Table 2,

Table 2 Coeflicients of LBIOS M’s for k<4

-5 34
6 6
k=2 B
3 2
2 2 |
(88—7/6)/120  (296—169~/B) /600 (—2-+-3B)/75 |
T3 pe| (2964-169+/86)/600 (as+w ) /120 (—2—-38V6)/75
.. 4 1 5 1
| Fag e 3"'12“” ) }
T 0.4519979167 ~—0.1612368826  0.1032085095 ~—0.0396187060 7]
sp gl U 9375859826  0.8275702968 =-0.1914285128  (1.0641896914
0.8667271882  1.6244930562  0.7561460719 —~0.0967284193
lo 8818488444  1.5527788761  1.8158772792  0.2500000000

§ 5. Modified Algorithms

When we apply the block implicit method to a stiff system, the Newton-—
Raphson (N-R) iteration for solving the non-linear equation (2.3) or (4.1) is
needed. During the N-R iteration, the matrix

b1 a2, o
where
3}2;4*?:) =diag(Jass, *+v, Juss)
if we denote
J,_-_(—%) (@0, Yo)

needs inversing. If (2.1) is a system containing m differential equations, DQ ig a
km X km square matrix far larger than what is to be inversed in other implicit
linear methods. The algorithm will require much work on them. It may be the
fatal defect of the block implicit methods. In this section, we shall modify the
iteration, so that only matrices of order m need to be inversed. We only digouss
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the case k=4. For the convenience, we assume that m=1, which ig easy to be
generalized to any m. When m=1, J, is a real number.
Sinee Yns1, ***» Ynss are unknown before ileration, we should use other

approaches to approximate the matrix aﬁa‘l(,y"' o) . For example, we may use . .
L ma

7 =

= Tmaly, 0<u<4 (5.2)
$0 approximate it, and hold it constant throughout the N-R iterations.
" Since B, when =4, have two pairs of conjugate complex eigenvalues A, Ay=s
2yt vi8, Ag, ha=tat Vsl a.:;;d corresponding eigenvectors i tmd, Eatnat. We have &
factorization ' | ' &

B=XAX™, - ' . {(b.8)
where o 3 - @ y oF aon :
1 O |
. ) b.4
e [ R
if we leb - '
m-[ . ] i=1, 2
| — 9 U
aﬂd P T
. X=(§1, M1, Eﬂ; ﬂﬂ)'- (5-5)

Moreover, by denoting Yao=X Y, =X b§=X1:; B=AX"* and
F(Vao)=F (XY uo)=F (T as)s (2.8) then turns out to be of the form

Y, o=4,0°+hBF (Y ,e) thfad, (5.6)

the non-linear equation for Y,. To solve this equation, we still use N-R
iterations, that is |

Y&v=F®, -DFY &) QY %), | (6.7)
where o . _ | |
QT2 =Y &, —ya®—hBF (Yu.a) —hfd,
DO(T®Y=I—hE 31: gm) ) . (5.8)

By the definition of the partiﬁlpderivativé and the facts that F(Yae) =F (Y aa)s

Y. ,=a"Y, ., we can conclude e - ~ - .

3?_&?“.;) o aF(Yn'n) _X.
aYﬁtﬂ : aY no -

Replacing it into (5.8), we obtain

po 79y =1—hB 2EXns) x,
: Y.

Using the approximationt (5.2) and the fact that gf; and X are exchangeable
yields o | __ | | . '
DQ(T ) 2D =Ii—hd oA (5.9)
Obviously, the matrix D has a special form
i = I "‘"hJ n+u4-d:l-. 0 ] .
Q) =—= ' 5.10
o -
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and the iteration (5.6) turns out to be of the form - ~ : !
Puo-¥8-DELQF). (56
Thus, the inversion of matrix D@ reduces to the inversion of mat¥ices I —AhJ, .4,
i=1, 2. A simple calculation yields _ ol . "
(L= hT yods) 2= {1 = 20T wyot | 2a]| H2T2 6}~
C x {Ta—hS i dl}, i=1, 2 (5.11)

Obviously, all formulas are true for a differential system, if we comsider -%5— as &

matrix of order m..In this way, for size k=4, only two matrices of order m need
t0 be inversed for four new values. The amount of work in N-R iterations of block
jihplicit methods is considerably reduced. The coefficients of the modified algorithm
by ABIOS, denoted as ABIOS-4, are given in Table 3.

Table 3 * Coefficients of ABIOS—4

- 0.1683653035  0.0511856316  0.0108142837  0.0830880422"
0.4007518700 —0.8068268524] —0.1167772081 —0.0972028015

X=| | 5512917981 —3.5010281211 . 0.4417480054 —0.2783481986
| 15000000000 —10.6288099656  1.0000000000  0.3456022647 _
- 2.412540972 0.218336136 0.187150656 —0.0605568010 ~

~0:195330074 .. —0.381461600 0.0869379598 —O0. 0588484475

B.-‘.d_x-:l: - : : ;
71 -4.919509188  —1.989866519 1.292853712  —0.386475110
4.400166517 —2.470536811 0.148455004 0.0631844729

— 4.17307072914 ¥ = 1.07828023096 7]  tg==0.6337350381

oo pia | 0-30480398027 |y | 0,13401421513 |  vy=0.1897640521

—3.46930650631 —0.42160582418 =0 . 3662649619
10.22862663890 _ e 2.81267586997 |  w=——0.4626504521

P ; oy
Standard Scheme, Let the previously computed values ¢,, f. be preserved,
Stage 1. Lt Vae' = Yel% Basii =Tntouh; b=1, -, 4 Fopy=F(Yaa)i= Fua.
 Stage 2. If |Afa]|.<0.05; then yuye:=Yu. Kilse 1ot Yoy be the value at @,.a of
Lagrange interpolation at the values ¥,_s, %¥e-1, ¥ Then, evaluate the Jacobian
s ool pikd (ﬁ )ﬂ at the value Yapee | -
oY o .
Stage 3. Leb

WY a(ZY | -

T =1 2uih(ay)ﬂ+u—l—|?\.;| h (ay )+ ; 1’_ 2

and compute the LU, factors of the resulting 7, =1, 2. |
Stage 4, Let =S |

Q_( hoa) = (E:l: e {:—Ii)‘ = ?E’;l'_ryn&ﬂ_hﬁﬁrn+k_hfn6

. " X
:. q I

Si=1-h+(3)

" where -
K AT, i1, 2

n+v
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A l b Sk

Bt.a,ge 5 Solve the equa.tions o
{ T:8"=L U13 = Q_’;,‘.

Tﬂai+2—'LﬂU23’l+ﬂ"‘Qi+ﬂ: i”=11 2! :
and let o T S
X Vo= P -3,
where

a{a) A (3%} A gs))

Btage 6. Allow-gai N-R 1terations and if they ennverge 1ot Y moe™= X Y gq and
farr=F(@n+x, Ynix), Which can be amepted Proceed to Stage 7. Otherwme let F,, , -
F(XY$¥) and add 1 to index »; return to Stage 4. | :

" Btage 7. Estimate the new Etep giza % for next step and deata Tt =w,,+k, y,,
Ynik) f. f,._[.;;, roturn to St&gﬂ 1.
Given a standard LU factorization routine, the ahove scheme is not dlfmult to

prograin,

- § G Numerlcal Results

Ezample . Krogh ha.s proposed the fullowmg exa.mple to test programs for
stiff equations ([7], pp. 218—-219) a

y (m)— —-By(m)—l—U(zl, 22 22 z;), y¢(0)= -—-1 fau=1 4 me [0 10(}0],

'i i F

> - R
wh‘era._ _ . L & T
P r . -1 1 1..17 Y 5;
- £ Lo B B g ¢ B
: v E—H 1 1 -1 1 ; U -.U' o e '(6 3
¥
-1 1 1 —1_ -2)
B=T. dlﬂg(ﬁi, Ba, ﬁs: Ba)e U
| z=U:y. | .
Obviot!sly, if we take transfnrmatwn z=Uy, (6 1) reduees to the furm
, _ | A = —B{’p';"l"ﬂf 5{,(0) - —'1 %_1 4 | ‘
The solutici\n I a5 . 3 -_ ‘ ; '
e s L . B{ _ '=' - ; :
| % _"_1 + éi- GM_ ’ '3' 1.: s 41 :
~where L :
01""'(114'131)

In the light of Krogh’s suggeﬂtlon the problem is 1ntegra.ted with 31—1000
Ba=3800, 83— —10 and B,=0.001. Initially, the: eigenvalues are —1002, —802, -8
and —2.001. When 0.001e>>1, they are —1000, —800, —10 and --0.001. |
- 'The initial step-size fip=10"* and then the-tolerance s=10"5. The'fnmerical
results by ABIOS-4 compared 'with Gear’s. published results"'" at the ﬁrst step
o pass 10'. for gm —2," ~1, »-, Biare given in Tablad." FO - :
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Table 4 Integration of Krogh Problem by ABIOS-4 and GEAR

m__.m__—_ﬂ

ABIOS-4/GEAR
Pregent error Steps © | Evaluvations LU/Inv. ! Averago step | Current time
.185D-6/.910D-7 6x4/70 35/179 12/7 | 4.84D-4/1.468D-4 | .0104149/.01024367
.656D-5/.267TD-5 | 10x4/110 71/263  20/12 3.00D-8/9.535D-4 | .114166/.1048869
.77D-7/.221D-5 16x 4/168 141/405 .. 32/15 1.57D-2/6.025D-8 | 1.00201/1.0122667
112D-5/.287D-5 | 22x4/216 195,528  44/20 | 1.20D-1/4.635D-2 | 10.4868/10.0110788
.861D-6/.208D-5 ‘| 26x4/252 231/616 52/25 | 9.34D-1/4.067D-1 | 101.276/102.477128
.B45D-5/.120D-5 | 80x4/283 | - 263/693 60/29 . | 8.33D00/S. 625D00 -| 1000.00/1025.77698 .

. Ezample 2.  FProblem Bs ‘ from Ennght’-‘?’ m;th; - Bigenvaiuea_l-; olose to
imaginary axis. P -

gy = —10y1 topfs; 91(0) =1,

yé” — oy — 10y, yﬂ(o) =1,

yr3= —4ys, ya(ﬁ) =1,
yf,== Bl S b y"4((})==1
1 o :’, o R y,-"'"o 52/51 i yn(0)=1:_ o
| SMESLNRE Yewd g B gys=*—0 1?!5,- h !"y&«(o) ==1 L
ot terminal value a:,-==20 ho—=10"%; a= 100
The elgenvaluasare: —0.1, 0.5, —1, —4, —104-1004; the tolerance s=10"*,

- Integration of problem B; is ext.remely difficult by Gear’s method. But ABIOS—4
has the advantage. The numerical results compared with those by GEAR,
SDBASIO, TRAPPEX, GENRK, IMPRK are given in Table §, where NJ is the
rumber of Jacobian evaluations required to solve the problem and ERR OVER the
mammum global error over all steps in the solution of the problem.

Table 3 Integration of Problem Bﬁ
___P_r_————_-—-_—"—__——

Methods | Evaluations NI LU .| Steps | Maxerror | ERR OVER
ABIOS-4 261 52 104 208 1.3E-4 0.019
GEAR 6738 4 . T 758 1.0E4 | . 0.003
SDBASIO I 352 852 17 117 0.6E-4 0.0
TRAPEX 1265 .. |+ 11 . = BT 0.8E-4 0.0
GENRK 867 20 60 77 28B4 { 0.039  °

0,754 0.0

IMPRK 1057 13 13 83

A large number of stiff problems have been successfully solved using the above
scheme. ABIOS—4 was implemented in Fortran, and was run on a microcomputer.
The scheme can yield better results if run on a larger—capacity computer.

§ 7. Conclusion

A olass of A-stabe and L;sta.ble block implicit one—step methods with
nonequidistant nodes have been deseribed 'and used for the integration of stiff
systems of O.D.E.s. The order of A~ and L-stable methods can. be arbitrarily
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high. The amount of work of the modified algorithm is considerablely reduced in
iteration, which makes the block methods useful. The scheme in Section b is easy
to implement. The method compares favourably with Gear’s method. Also, for
some problems with eigenvalues close to the imaginary axis, the ABIOS-4 can be
much more efficient than Gear’s method. This may be of importance in seme areas,
for example, for problems arising in cireuit analysis. Finally we note that there is
much work yet to be dome in implementing block methods in an-efficient manner.
In particnlar it is clear that the problems of reducing the number of LU
decompositions and of eﬂ'eutwely ﬁontromng tha glnba.l error need further
investigation. oo By

The author wishes to thank Professors Kuang Jiao-xun and Wang Guo-rong
for theur Valua,ble suggestmns mneermng the strunture of t]:us paper.
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