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Absatract

The MGR[»] algorithm of Ries, Trottenberg and Winter with v and the Algorithm 2.1 ‘of
Braass are sssentially the same multigrid algorithm for the discrete Poisson equations — A1 = 7. In this
* report we consider the extension to the general diffusion equat;mn —T Pt p-p(m, ) ;p.,::o In

particular, we indicate the proof of the basic result pe —(1+Kk), thus extend:ng the results of Braess

-~ and Ries, Trottenberg and Winter. In addition to this theoretical result we preosent computational
results which indicate that other constant coefficient estimates carry over to this case.

: oy §L Iﬁtroduction '

i

Multigrid methods are proving themselves to be successful tools for the solution
of the algebraio equations associated with the disoretization of elliptic boundary—-
value problems. Nevertheless, it seems we are just begi nmng 10 understand this
powerful idea. Hence there is a need for continued prnbmg, expenmentatmn and

new proofs——less for the sake of proof and more for the sake of in51ght
Let X, be a finite dimensional veotor space of dimension n. Lét A4, be =
non-singular linear operator mappmg X, onto X,. We are ﬁonﬁerned with the

problem |
AU =T. B - { o= BT

Multigrid methods for the solution of (1.1) are haged on the following set of ideas.
Suppose that (1.1) arises from the digdretization of an elliptic boundary value
problem. Then U ig an approximation to a “smooth function” U(z, y). Moreover
U (=, 4) can also be approximated by other approximants {UntE{ X} with X,,
& finite dimensional vector space of dimension m. Thus U can be approximated by
such a U, with m<n. At the same time, most of the classical iterative methods for
the solution of (1.1) converge very slowly. For these methods the spectral radius
of the iteration matrix is of the form o

p~1—c/n. | (1.2)
Indeed, ADI and SOR methods are considered exceptionally good becausse
p~l—c/ T, o (1.3)

1'he same analysis which yields (1.2) also shows that the eigenvectors associated
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with this slow Tate of convergence are converging (as n-> co) to a very smooth
function. That is, these (not all) olassical iterative schemes have the effect of

“smoothing’ the error.
A multigrid method for the Htilutmn of (1. 1) is 'ba.Sed on the followmg entities:

(a) A smoothing operator S: XX, Jeg
8 is an affine operator of the form

Sv=Qo+Kf, (9 o (1.4)
where @ and K are linear operators. And, if u is the unique solution of (1) then u
is a fixed point of 8, i.e.

Su=Gu+ Kf=u. (1.5)
(b)) A subspaca X with - o oo g v

| _' * dim .X',,.=mﬁdlm X,.-n | (1.8)

(o) Tawo linear “omnmmwatm operators:: | |
Ir: X=X s xox o, e ow ow Klad)
."I"" X -*X' R , By (1.3)

(d) A course grid operator: & nonsingular operator > o

; A B e X (1.9)

Having lmted these ingredlsnts let us. deacnbe the mnl ngnd jiterative scheme
for the solutmn of (1.1).

Step 1. Let u® be a ﬁrst guess

Step 2. ,Su“-m, o= f— Au

Step 8. ra=1I7T.

Btep 4. Solve

| Al =1,

. Step 5. w'=u 7+ I

Remark It r.:ught appear . that we -have (merely) described s “two grid”
1terat1ve method. However, true “mulngmd” iterative schemes are deaﬁrlbed by

this outline. The operator A, may require the use of other spaces X . =
In our discussion of these methods we follow a_ basic observation of S

Mﬁcormmk and J. Ruge'; we shoyld focus our attention on the two basic swces
R:=Range I35, s B heee (1.10)
N:=NuHtspace I" Ay ~ 2 (1.11)
A basio result ig T o S |
Theorem 1. Suppose X.=RON awi | - ,
A A zu . o O (1.12)

Sﬂppose A, 18 nongingular, and | | |
| S s =U-a=n+Itw, . (1.3

where - # < - _

' nelN, weclkX,. . : ¥ (1.14)

Then _

N AT N (1.15)
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Wlth thls theorem we see the “rlght Way’ " to view (1) the smmth_mg operator
S and (ii) the coarse grid operator A,. That is, S ﬂhould make 7 “small” while A1
should be & “good approximation” to A7

-With thig insight we study the MGR[»] multigrid methods, These methods, the
MultiGrid Reduetion methods were developed independently by Braess™, and Ries,
Trottenberg and Winter™ for the Poisson Equation.

In [1] Braess proposed and analyzed a class of multigrid methods, In
pa,rtmma.r he considered a particular algorithm for the Poisson FEquation
“Algorithm 2.1 of [1]. He sliows that the eontraction number p for a two-grid
method is given by

Hp-g.%.l &ty B R I (116)

This result ig valid in any polygonal region O prowded that its corners belong to
the coarsest grid, and the corners are “even” points, In [8] Ries, Trottenberg and
Winter disonss the class of MGR [»] methods for the Poisson Equation in a squars.
Using Fourier Analysis they obtain an explicit formula for the corresponding
contraction numbers p{r]. In partmular they obtain |
. . | v T

: pl0] = 5 PLI= 5 - . » 5 {11
As it happens MGR [0] is the same as the “A]gomthm 2.17 and the results of [1]
and [3] are consistent. The results of [3] are more precise for mora restrmted
problems. w 5 g § |
~ In this report we consider the problem

—5?' p(m y)‘?u-—f in 0, p(m y)?po}{) (1.18a)
“ u—ﬁ on 3!2 = | - 4l 18b)

and its sta.ndard ﬁmte difference analog (see seotion. 2) We eonslder a. Gl&ﬂs of
multigrid methods which generalize the MGR[»] methods. In partmular when
P(z, y)=1 these methods include the MGR[y] methods Our basic result is the

following: Consider the two-grla method Then

p{%—.——l—ﬁ’h e T B SRRy ¥ 2 {1.19)
where the constant K is determmﬂd by the O* (Q) nﬁrm of the “diffusion coefficient”
p. Moreover, the proof of (1 19) md_ma.tes why one should expect great 1mprovement
when more “smoothing” is introduced. 5 My .

In section 2 we desoribe the basic dlsﬂrete (ﬁmte—d.lﬁ'erenﬂe equations) problem
when @ is the unit square. In seolion -3 we “analyze” the multigrid algorithm
developed in seotion 2. However, in fact, we do not provide a correot analysis.
Rather, we give a heuristic argument which is “a1most” right and is the basis of the
correct, and very technical argument which will be presented in [4]. Finally, i
gection 4 we present some computational results. These computations were EﬂI‘I‘lEd
out on the CRAY I at the Los Alamos National Laboratory, Los Alamos, New

Mexico, U. S A
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§ 2. The Problem
For the purposes of expository simplicity we choose & to be the unit square

Q={(z, ), 0<w, y<1}. (2.1)
Let
1
| h = N1 Az = 4y, - (2.2)
The function p(z, ¥) [of (1.18a)] is to be smooth and satisfy |
oz, ¥) =pe>0. (2.8)

Oonsider the difference scheme: for 0<k, J<N

-}%-g- [Dsr1/2,8(Uns100— Unis) —Pr-1/3,1 Urs— Us-1.0)]

+ 7}? [ 25372 0x 41—~ Tn8) = Proi-1aU 5= Urs-2) 1 == fup - (2.49)

3 Ugs=0 ifkﬁrjisﬁor N--I—l,: (2.4b)
an . K ' | -
Pri1/2,3 =P((k +1}'{2)h: 3h): fliJ ﬂf(kh, jh): ete. (2'5)
We rewrite (2.5) as |
[LaU 13 = fuse - (2 .8)

We now turn to the qﬁestion of the solution of these linear algebraio equations,
via & ‘“4wo-grid method”. Let

Qy={(kh, jh): 0<k, j<N}, (2.7a)
Qg={(kh, jh) €E 2 k+j=0 (mod 2)}, (2.7b)
Qo= { (kh, jh) € Qs k+j=1 (mod 2)}. (2.70)

Our two grids are O, and Q. Let 8, and Sg be the spaces of grid—function defined on
0. and 0y respectively. In both cases we assume the functions vanish on the

boundaries, i.e.
Uy=0if b or j=0or N+1. (2.8)

QOur first step is to set—up “aommunication” between these two spaces. To be specific,
we construoct linear “interpolation” and “projection” operators Iy, Ik so that

I¥: §,—> &8s (Projection), - (2.92)
IX: Sz—S» (Interpolation). | (2.%90)

We define the interpolation operator I as follows:
(i) if k+j=0 (mod 2), then (UEC Se)

- (13013 =Uus. ~ (2.108)
(ii) if b+j=1 (mod 2), then -

EU = -@1;- [ pes/s iU x-1,9+DPrs1/2, 40 ka2, 5+ D s-1720 2011 +Dp.g21/80,931],  (2.10b)

‘where

Ous= [ Pr-1/2,4F Prs1s2.i T Pr, 341727 Pr, 4-1/2] - (2.100)
The projection operator Iy is defined by: if k+j=0 (mod 2) then (UERSL)
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[I3U ]z =—r— 1 [ Px-179, 40 x=1, 37+ Pry1s9, U x41, 5 + 0, 4-173U %, 521

']' Pk.ﬂ:lﬁaUh f+1 +OHUH] . (2 . 11)
Remark. We note that

=2 (ID)"
o i Y
R:=Range I%. - (2.12)

The choice of interpolation operator 7% enables us to characterize the range R of

£} r a8 follows:
Lemma 2.1. Let IY be defined by (2.10a), (2.10b). Then, & funotion

UwmU ) €S, isin R if and only if |
[ZaUJ =0, V(& j) Dk+j=1 (mod 2). (2.13)
Corollary I% is of full rank, i.e. .
dim R=dim Sp.

We are now ready to deseribe the class of two-grid methods under disoussion,
Let G be a “smoother”. That is, given u®€ S, we construct  via the formula

“ = % =Gul=u'+B( f— Ly’ (2.14)
where B is a ﬁxed, gwen matrix. The two-grid iteration proﬁedure (baaed on (@) is
given by: - |

Algorithm.
Step 1. Given «°€ S, form -
% ==G*-u° o . (2.15)
Step 2. From the function u gwen by for Tc—l-j =0 (mod 2) | -
s =Ty (2.16a)
for k+j=1 (' mod 2) solve for 4, from the equation ) '
[Lnt2] 5= fus- - (2.16b)

Note. In other words we relax” the equatlons on the “ndd” pomts
Step 3. Form ' ¥

- = f— L,.u (2.17a}
and | |
- rg=IET, | o T (2417D)
Step 4. Find the function ¢ € 8y which satisfies
| L m=rg, S o (2,18a)

where L is the difference operator desoribed by:
For £+j=0 (mod 2)

[L%}¢] kT al—'lfﬂi Jiif@i—lr .’—1 = ﬂk""i;’ﬂl""'!fﬂét'&ll i4+1

+ Y 2iPus— bx-1/3,311/9Pu-1, 341 — Ore1/9,3-1/aPu41, 11 (2.18b)

where
1 I_- — gy - g™ . 14 —I |

ax. 1f=.;l—1fﬂ=“—h§‘[_m yﬂ*ci__?’: :. 1-1/3 4 Pr.g 1,; :E:t 11;:1 -1 ], (2.180)

by_s/s, 58 ‘m'ﬁ—%ﬁ‘ [ Pr- :L,ffz!ﬂ:F ﬁ:j S41/2 Pamu,:::t 11;5. ey , . (2.18d)
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 — i — o e |
FEECOPr b ! = : : : i i = : i i L : L 3 g

.........

. Vi =Or-1/2, I»if£_+bk—ifﬂ; j+1/2 T brarszag-1sat-Gueasairzsae (2.180)
Step 5. Set i
w=u+Iid.
Step 6. Set

w' —>u’ and return to Step 1.
The operator LY’ chosen is Step 4, i.e., in (2.18a) is the easier operator to
analyze. However, it is not the right operator to mse in practical problems. It is

more convenient to use the natural “skewed” b—point difference operator on ihe
even grid, that is if ¥+ j=0 {mod 2) then -

LU= A= prsmsanlss, s Prssassnlesnss

— Pr-1/2,4-17a0 x-1, -1"‘23'1:-1;9.:‘+1;:1U1;—1 ;+1+S|.-,,U1,;}, (2 19;&.)
"il‘i"hEI'ﬂ..r

Sm—{_’ﬂkﬂ;ﬂ, 5+1;2+P1.:+:1;ﬂ..f 1;24‘2?::-1;2 J+1fﬂ+,'pk-1fﬂd 1;2} | (2-19]3)
Fortunately, the basic result (1. 19) holds Wﬂh t]:us choice' 1P because of the basio

eatlmate

A= KRRIY, B, ¢>€(1+Eh)<ﬂ”¢r, . @20

F

. § 3 Analysm of the Algorlthm

We begm our ana.lyms W1th an observatwn which is esaentmlly the restatement
of Theorem 1 (of the introduction) in our setup. Let

Le:=IfIaly. - 3.1
Consider Steps 4—5 of the two-grid iteration. Suppose we rep]aee Ly by Ly, 10
suppose we find the function ¢ which satisties i __

- Lgﬂh:f'ﬂ,
and set : =
w =t Ip
We claim that N
. _ Lhu1= »
i.e. 1t is the desired solution] To see this we set | -
e=U—u (3.2)

and observe that Step 2 implies that if ¥4 j=1 (mod 2), then
(Ta) s = (T — Inii)ag = (F —~ In)ag =02
Hence Lemma 2,1 asserts that there is a function V7 € 8y and
e=IyV.
We now verify that

L3V=IE (L;.I V) "=IELHE=‘TH
b=V
~Iyp=u—e=Ull (8.2)"

Unfortunately we have chosen Step 4 with L§ and not Lg. This choice was not
merely pigue on our ﬁpa'rtl(or the part of Braess and Ries, Trottenberg and Winter).

Hence,

and
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alin

The point is tha,t hawng chosen L"'” as a five point star we can now proceed to
replace Step 4 with a new two grid step, i.e. we can build a troe muliigrid.
In any ocase, the problem of Step 4 is seen o be
" L®¢=Lgp, K=1, 2. (3.8)
We now turn to a complete description of the operator T | |
Definition. Let Lg be the difference operator defined on Sy by the formula
[k47=0 (mod 2)] |
- | [zEVJH —— Ay, Ukw2,5— Ars1,0x+2,3— By, 31U, 3.

~ By, 1430%, 342+ DU, (3.4)
avhere -; .
Ay " Pri1/2, 1 Pr+3/a9 | .. (3.Ba)
% ’ Ci+1,1 AT ' |
By, 54 y = Pend31/3 P §38/3 (3.8b)
' Cic, §41
| Dy, 3= [Ars1, 5+ Aps, s+ Bige1+ Br,s-1l. - 7 {(8.50)
Lemma 3. 1 F or “entertor”’ jpo«zmts, (ﬂ:,,:, y,} with 2<k, yé;N -1 we ‘have the
ddentity L i w e o B :
TR P EF% I +o L (3.8)

Proof. Direct Computation.

Unfortunately, (3.6) does not hold on the points (zy, 4,) with k=1 or N and
j=1 or N. The argument in [4] holds in very general domaing. Butf, as you can
imagine, it is technically complicated. So, we shall simply assume that (3.6) holds
throughout 0.

Having (3.3) and (3.6) we'ﬂbtﬂ.in

LPp = ( L+ ;xﬂﬁ_)lp. (3.7)

Thus
T =u—l—IE¢;b (u+ I} @‘*‘I (@ —¥).

:Usmg (3.2)* we see that
i " Lo g=w-U=Ig(d—9¢) i (3.8)
and, we recall that .
e=u—U=I%(). - (3.9)
We now turn to an estimste which is an axtensmn of the basm result of
Braess™ (see [4] also). ' |
Theorem 3.1. .Assume (3 6) holds throughout Q;.. Let the “smoﬂthea*” & of Step
1 én the MGR Algorithm satisfy |I—BLg|<1. Let p dmta the spectral radius of this
two grid iteration scheme (h—>~/2h). Then, there is a ¢omtant K depending only on
|VD|.., the mazimum norm of the first derivatives af ﬂw “diffusion coefficient” p(x, v),
such thmﬁ

e
—— - —lm=bleoeta L-ZMranTE MR T

<L iEh (3.10)

Proof. From (3.7) we see that
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Ab ¢'='—[I — Ly zﬂ'.b
Thus we turn to the spectrum of

T g (I L;lf,)

Let <A, V) be an eigenpair of T'. Then an elementary computation yields

| (A—20)LgV =I1gV. f (3.11a)
Hence <
(1—2A) (WVTLgV) = (VTLgV). (3.11b)
Since both Ly and Ly are symmetrio positive definite operators (see Lommsa 3.1)
1-22>0and A< L. (8.110)

The proof of the theorem now follows from the following basio, but elamentary,
lemma.

Lemma 3.1. LetV be o gmd—mtar defined on the EVEN points, i.e.
V= {Fu}, b+jm=0 (mod 2), 0<k, j<N-+1.
Let (see Fig, 1)

Sy KM, )

N2k
V -V -
Y b-1,431 ¥V kg (3 .19
(Vﬂ') ]-'Tf ﬁf 2 h ) | ( )
Vs __Vmag}: Vm.:}
s (V'IJH Vh”;;a_ Vs, 1 |
Then _ o
VILRV = (24%) g [@xs1/2, 54278 (V) B3+ brcaye, s32/0 (Vo) 21, (3.18a)}

VLV = (4h%) 2 [Aus1,s (V) &+ By saa V)il (3.13b)
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Moreover T pl ¥
Ve= \/1—2- L=~V i:+n.i_,‘if (-V}?hf;l':’ e s A (3.14a)
Vyfﬁ?t(rfﬂ)m,ﬂﬁ(m) ol (3.14b)

Proof. 'The equalities (3.13a), (3.13b) follow from a direct computation using
summation by parts. The equalities (3.14a), (8.14b) are an immediate result of the
definitions (3.12).

Proof of the Theorem. We observe that there is a Gunstant K dﬂpend.mg nnly
on |p]e and po such that | - -

Borsmsmn—som|<Kh,  (3.160

and .hﬂbk:l:l,’ﬂ‘hﬁﬂifﬂ--_%f).lﬂf <Kh,
Paummp=smtO®, . (8.15H

and 7Pby .1/, 47170 = % Py +0h),
- W Arsss— < s | <Kpuh, (3.162)
WBuss—g oy |<Kpuh © (3.16b)

-

B Ays,y= Puy+O(R) (8.172)
KBy, 11~ pu+0h). (3.17h)

Using thﬁée results together with (3.138a), (8.18b), (8.14a), (3.14b) yields
A Ass1,sVa)iy=5 1 pe [P0+ ORI [V D Rs2s—2(V ) k. s VI m+ V)i,

4038y .1V ?);,—-2— hﬂ_[pg,»ﬂ"o BV D R1,001 2V D a1, 02V s+ Vo) 2.

Thus |
4 [Axs1,:(Va)ig+ By, 1.1 (V)i "% (2%, 1 +0(j*)] [Ry,s+Qul, (8.18s)

where

Rh!_ [(Vﬂ)§+2’!+ (Vn £+1,!+1 +2 (VE) 3!].: (3 *1813)

Qur=2[(Vas1,050 = Vs, (Vedage (3.18¢)
Henoce

WP Az1,5(Va) kst Brssa (V)i 4
<2y (L +E Y (V) eg+ Drar, s(1+KR) V)i s
+Py41,441 L+ Kh) (Vq 14410 | (3.19)

Similarly ' |

25 [ereass 1432V ) 1 Deasm 1012V o) ] g (1—-K?) [(be: <+ (Vq)gj] . (3.20)
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Finally, from these estimates and (3.13a) and (3.13b) we obtain

VLY <2[Zpu(l+ER [V DY+ V)R] <2 [%;%—]VTLEV-

Therefore . .
1+Kh
1 27&'&;21 Kh*«'@—l—ﬂ'oh
and ST
1—|—2Knh -a{i.

This estimate and (3 110) prﬂve the theorem. |
It is of some interest to consider the role of “Emﬁﬂthmg’ . befor& ﬂolvmg (2 19a).

We have

LE¢’ e :’.E =] f LBE )
or
Lgtp = L
If “gmoothing” is applied either on §, or on Sy we have
Ly¢p=LaGu

and we are concerned with
”

- 16u—]_lGu—o] 6
e

Therefore, smoothing can be advantageous either because
uf

N L - Laifm)ﬁ?u[! / |Gul

is small, Quite clea.ﬂy, this quanhty is small when G'u is smooth,

is small or because

- &4, Computﬁtibnal Results

The theoretical results of the preceeding section extend -the work of - Braess'!!
for the MGR [0] iterative scheme and suggest the value of additional smoething
steps i.e. MGR[»] with »=>1. We have undertaken some mmput&tmnal experiments
which study this case and ilJustrate and document the theory. - - -

"The results of Ries, Trottenberg and Winter™ for the case p(, ly) =1 ymld

¥ 0] /L, sl E el (4.1)
. ; P ' 2! P 27: H. 2 (21)_!_1--)95*1-1'
The 'syj:ﬁbol /' means that the cni*reap’ﬁn’ding’ p[¥] inoreases to
yi> 7

"(”) | 2 (2;-+1)ﬂﬂ+1 ,

8s % | Q. .
a Generally gpeaking the ﬁomputatmnafl reﬂults indicate that (4.1) holds wﬂ:h 8
posmble errox of O(%). We give four 111ustrat1ve results. '
Invall eases'Q is-the unit square CHE T w8 . 08 vt melene
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1 |
k'_"_"'- 4|2 d
. R . (5.2
;5 - - ; - <t 1]
Case 1. - p(o, y) =6, u(a, y)=(1~e) (@—1)y cos 3
: . Cage 1.1. :Lg_—L'E‘, 500 (21$b) o
N 0 ol 2 3
e eeeeee— g— -
15 0.4857 | oomr ] 0.0482 0.0351
81  0.4842 |= 0.0739 ] 0.0431 0.0812
63 0.0399 0.0278

0.4836

0.0714

0.0283

15 0.4853 0.0650 . 0.0347 0.0207
31 0.4841 0.0697 0.0376 0.0258
53 0.4835 0.0708 0.0386 0.0263

i) 5 oy S Pt

Lol

o () 0.5000 0.0741 0.0410 0.0283

Case 2.

P, 9)=(

1

3—a

o —

)(313,): u(w, ﬂ)=ﬂ‘”sinarwainwy,

15 0.4879 0.1084 0.0727 0.0063
31 0.48564 0.0801 0.0582 0.0443
63 (.4851 0.0784 (.0473 0.0350

0.0741

UESE 2-2- LE_LE)

5

0.4869

0.0377

¢.0255

31 0.4851 0.0710 0.0390 0.0270
63 0.4850 0.0715 0.0890 0.0270
o (v) 0.5000 0.0741 0.0410 0.0283
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L N

To compute the elements of LY for points on the boundary of 2, the following
procedure was used. Use formuls (2.18b) to compute ay,, referring to points inside
and then rather then setting dy; to be the sum of the ay,'s, set dy; t0 be the average
of dy; at the two nearest interior points. At the corners of Qg, set di; to be dy; irom
the entry of the nearest interior péint. This approximation to Ly’ differs from LG
by no more than O(%) and ag can be seen from the computational results appears to
work almost as well as LY, which is the “ideal” ﬁhome |
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