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77 T formulation of an inverse problem of a partial differential equation with multi-parameter to - -
. be determined is introduced. The numerical algorithm, pulse-spectruimn technique, isextemded to solve -
. this type of inverse problem. An example for remote sensing of the thermal conductivity and gpecifio
" peat of a nonhomaogeneous matetial is demonstrated. Numerical simulations are carried out to test the
feasibility and to stady the general eharacteristics of this techmique without real measurement data.
. Tt is found that the extended pulse-specirum technigue gives excellent resnits.
» . ,
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1. Introduction

In this paper, we consider an inverse problem of determining the coefficients of
g partial differential operator with a known siructure in terms of s governing
equation, some initial conditions and boundary conditions, and some auxiliary
information. We call this type of inverse problem “operator identification”.
It originates from various kinds of problems of mathematical physics, for
example, heat transfer, structural dynamies, engineering synthesis, remote sensing,
geophysical prespecting, medical diagnostics and so on. - L s
" In section 2, the inverse problem of a partial differential equation with multi-
parameter 10 be determined is formulated and the pulse-speotrum teﬁhnique (PST)
is extended to solve this type of inverse problem. The PST was first introduced by
Tsien and Chen™ 1o solve an idealized one-dimensional velooity inversion problem
in fluid dynamios. It was further developed to handle the noigy, poorly distributed
and inadequately measured data by Chen and Tsien™, Lator it was used 10_solve a
one-dimensional inyerse problem in electro-magnetio wave propagation by Tsien
and Chen®®. In a different direction, the PST was modified o golve an. inverse
problem of a one-dimensional diffusion equation™. The basic idea of the PST is to
measure data in the time domain as farictiens which are Laplaoa .‘ifa.nsformabla, and
carry out numerically the gynthesis of the unknown. parameter in the complex
frequency domain by a speofal iterative algorithm.” "
" As an example, thé remote’ sensing’ of ‘the thermal conductivity and speoific
hest of ‘s nonhombjefieons ‘material’ 1s ‘demonbirated . -Nuimerical ‘simulations are
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teohnique withont real measurement data. It is found that the extended PST does
give excollent results for the inverse problem of mnlti—pa.ra.meter 0 be dete;r:ilined.

. ¥.

2 F ormulatmn of the Inverse Problem and Numerlcal Algorlthm

00na1der the followmg d1ﬁ’erent1a1 equation deﬁned on the time-space domain
Iu(z, t)=p(#, 1), (=, EeaxT, (1)

where o= (2::1, T, , xy), 218 & p-dimengional domain, 82 is the boundary of £,
Te=[t]|0<1], ul, t) I8 8 sufficiently smooth function defined on &XT, which is

Laplace transformable with respeot 10 {ime variable #. Furthermore we Suppose that
the differential operator has the following form (siructure)

L= E [Ax(ox(2)0s) + Bu(o) Dyl | (2)

where A,, Oy and Dy are elementary linear operators (for example, differentiation,
integration, or their various combinations). 4, and Oy are operators of variable =
and D; is an opera.tor of variable #. The ooef Goient ox(z) is a piecewise smooth
flmctmn on £2; Bx(z) isa piecewise continuous function on 0.

The inverse problem of the differential Eq. (1), i. e. operator 1dent1ﬁﬂa.ti0n
can be described as follows: The governing equation will be in the form

: ILu(z, =gz, t), (& 5)€QXT (3)
with initial condition as |

e Bu(s, 0)=0, @€Q : ' (4
and boundary condltion a8 -
_ Bu(w, t)=f(z, £), »€dQ, 0<¢ - {5)
 and auxiliary boundary conditions as - | |
| Baw, t)=Ffi(e, t), o€IL, i=1,2, -, I ; (6)

where B, B and B; are initial-operator, boundary operator and anxiliary boundary
operator reﬂpeotwely In Eq. (6) I is the number of m:n::nlma,rjar bounda.ry oconditions,
n_nd 262, is & paxt of boundary a0.

The inverse problem i8 o determine the ooeﬁcients an(z), Bu(®) (b=1,2, -, m)
of the u:nknown nperator from k:nown opemtors A,,, Oy, Dy, B, B;, B and Eqs
(3)—(6) i

N umrwal .Algmthm The PST calls for the I.ﬂ.pla.oa transformation of (8),
(B) ;° (6) ‘So the problem is transformed from the’ tima doma.m 10 tha oomplex

freqnenoy dommn and ’ahe GOIIGBPOIldJILg pmblem is

ot e 2 [A,(m(mapx)w.(m)P(an(m e)-di(m DY
AR 58 ﬁf?t a)-F(m, s), mem L (8)
Inh}';v | T E‘U(mj ) Fi(ﬁ:qﬁ): %o ﬁgr?glﬁﬁﬁﬁl ,2; b ; ..... : A (9)

| Hhem P(8) 38 the polynomial ntﬁaqﬂenﬂrs and U{a,:8): Q(w, 8) Fla, 8) Fi(m 8),
Bl (e, 2,80d.-BU(w, s)-are.dapls sransformatipns of u(e, 1),.9(a,:1)y F(; 0),
| f;(a: t), Bu(w, t) and Bu(e, ) tespecﬁvely -

- Now, the Bynﬁheaia ig carried ond in tha (w, &) domain, ‘and the unk:nown
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parameters will be determmed by an 1ter&twe procﬂsﬂ The 1tera.t1ve numenoa.l
algorithm begins with P .

T () = a;;(m')—I—ﬁa"(m) B“*I(m) B"(m)-{-ﬁﬁ"(m) . a0)

U"*i(m s)-=U“(a: 3)+3U"(::: $), k=1,2, v m, =01 2
where the snpersmrlpts denote the oycles of 1tera.1amn ak(m) and S (m) are initial
guess for the unknown.coefficients ex(w), Bi(e) and [def]<[ap I |88 <18l
HSU"l < HU"H Substituting (10) mto (7) 2nd (8) we gat | N
- - IO (0, 5)+30%a, 8)) =(s, 5), o

g(U"(m, 3}+3U"(m, s))n——-F(w, s), wcCoQ, -

.....

oy E [A:(aﬂ CW) + ﬁﬁ(m))cﬁ (B" (w) +3ﬁ" (o) )P (8)].

Sphﬁmg the a.buve equation aﬁaordmg 10 the order of 3 and neglecting the terms
of 0(6’) one ob’sams two equa.tmna one is for U"(g, 8): _

I'U*(a, s)==¢(m s) wE 0, |
P> (11)
TR U», 8)=F(z, 3), zcof, Iy
where -

- . A E Mn(a’i(w)cx)-l—ﬁ"(w)l“ (8)], | (12}
and the other is for 8U* (@, 3): | S P | |
Lr3U"(, 5) = — 33 [4(302(@)en) B P(DIUz, 5), 2€Q  (13)

:EaU'(a: =0, zCIQ. | (14)

By the method of Green’s function, Eq. (18) can be ﬂhanged to & Fredholm
integral equation of first kind which relates to 30, 38; and 3U™:

OU" (<, 3)=-—j (o, &, 3) 2 [ 42 (8az (@' )es) +38e( ) P()1U(2, s)da’, (15)

WhEI‘E G*(@, 2/, 8) is Green’s funciion of the differential operator L"_ with

homogeneous bounda:ry oondition. |
For the purpose of iteration and acceleration of the convergence, U*(g, s) on

the left side of (15) can be replaced by U(a, &). Then (15) becomes | |

Ua; 8)~Ua, )=~ | s, o, 5) 3} [4s(Ba2(e/)en)
sh N +88U)P()1UN, 8)da’. (16)
Applymg operator E to both'sides of (18)-yields, with the help nf (9) = "
- Fz, - B, s)-=—] B, o, 5) 3] LA(ai()o)

- A8 (e YP(8) UM, s)da’, é=1, 2 ;s (17)

If U"(m s) is known then (17) is'a system of Fredholm mthraI equaismns of
firgk kind for unknown 8¢ () and- 08(®), k=1, 2, o
Egs. (10), (11) and (17).form the :basio struotum for emh 1teratwn in $he

, lteratwe numerical algorithm of PST. The proaedure is

~)(8) Use a nnmermal integration Bubrouﬁn.e to ev&luaiie. the Laplace tzansforms
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¢(w, t),f(z,{) and fi(e,t),4=1,2,- , I, for different values of s*a,,j =1, 2,- e

(b) Give initial guess: ox(z), B" (m) b=1 2, «
(c) Solve (11) -and caloulate Green’s funoction Df oparator I° for s-——-s, je=1,
, J, 1o obtain U"’(m 55) &ﬂd Gﬂ(‘-’“ ﬂ-" 3;) o |

(d) Solve (17) to obtain dol(a), 3,82(:::) obtam from (10} al(a), Bu(=),
k-= 1 2,

This 18 tha essenoe of the first oycle-of itration. As for other cynles just repeat
the procedure (b)—(d), until the oriterion of convergenoce is satisfied. . . -

Example. “Remote .sensing of thermal conduoctivity and Epemﬁﬂ heat”. An
example for an, inverse problem of a; differential equation with multi-parameter
to be determined is given here. The inverse problems for linear .and nonlinear
diffusion equations have been siudied by many researchers =™, However, the
techniques they employed require the knowledge of the heat flux at the boundary,
which cannot be easily measured. Moreover, by using those techniques only one
unknown parameter can be determlned In our example, the thermal conductivity
and specific heat of a nonhomogenauus ‘material can be inferred from s small'number
of experimental data obtained threugh remote ﬂenamg techniques on the boundary as
opposed to in #itu techniques in the interior: Experimentally, if a reliable experiment
can be performed, the measured physicel quantity should be as fundamental as
possible; in this ocase, the: temperature measurement is preferred to0 the heat flux
measurement.

Congider a diffusion equation of one dimension

2 (b 20 8= (2)o(e) 242D, 0<o, 0<t.

ot
Wrbhuut lm of generahty, suppose p(m} —1 The above equa;lamn becomes
ou(z, t) 31:5(9: )

(k() 2 ) ol 21, 0<a<t, 0< (18)
with initial condition 5 - W L B B :
boundary conditions - By a2 w _

2 sa WO H=F@; . ult, (D, 0S8 (20
and auxlhary b{)tllldal‘jf conditions | % - r 3 ~
&L(ﬂ: t) " 315(::: i)
R R SR

Where f (t) h(t) a(t) and:b(2)'are given: funotmnﬂ which are Laplace transformable,

E(«) and ¢ (p} -arerhhermal, conductivity and specifio. heat respectively, to. be
determined from Eqs (18)—-—(21) |

' Obviously, _Eqéb{iiﬁ}’* iglg .‘iapblaiﬁﬁ oaga-of Eq “(8) “with m=1, operators

0 Vi ﬂllkfﬂ.ﬂﬁ ﬂwﬂmﬂﬁﬁ ﬁi(m) - [ (m) ﬁi(m) == (ﬂ?) and

* f ,. w -f?ﬁé‘ﬁ {“‘f Y g5 "qu?i‘ FI s e -5?.':-

oy _;._ - I-
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U, )=F(@), UQ, H=H(), - - (23)

EUE;I ) 0=A(3>; 3U(m 3‘)! '=B(s).- | o - (24)

Numerical Simadation. In order to test the feasibility and to study the general
characteristics of the computational algorithm without real measurement data, the
following numerical simulation procedure is carried out:

k* («) and ¢*(z), which are supposed to represent the correct thermal ﬂﬂnduﬁtlmty
and speoific heat of an object, and also'the boundary conditions £(¢) and A(2), which
are supposed 0 represent the measured data, should be chosen. Their ;Laplace
trangform ¥ (s) and H (s) are numerically ﬂomputed for a ahc:sen discre’ae set of s===s,,
quml, 2, oo, J. ' o " :

The two—-pomt boundary value. prublems (22), (23) with the. chosen k‘ (z),
¢'(x), F(s;) and G(s;) gre solved by means of the finite difference method (or other
numerical methods). Thus one generates. the rest of the supposedly measured data
A(s;) and B(sy), j=1, 2, ---, J, by a simple finite difference approximation.

(@) and ¢*(o) are assumed. Then, according to the procedure deseribed above,
F(2) and ¢*(2) are obtained. In a similar manner, #?(z) and ¢*() are obtained. This
is continned until finally a numerioal limit, 5*(2) and (@), is rea,cshad -

The Lg-norms |%* (&) —&*(2) |1 and |c* (@) —c*(2) 2 can be used as & criterion for
evaluating the perfﬁrmanﬂe of the computational algunthm |

To avoid the expenses in perform_lng the numerical Laplace tranaforma,tmn
f(¢)=1—e"* and &(¢) =0 are chosen such that F(8)=1/(s(s—~1))and H(s) =0.

To.make the solution 3%*(x) unique to FKq. (17), we should add a boundary
condition 64"(0) =0. If we add another boundary condition for 8¢"(x), for example
3¢*(1) =0, then the acouracy of the solution can be improved greatly. These
conditions mean that the initial gness *(z) and ¢°() should be identical with the
exaot solution at the boundary points, i. e. k“(ﬂ) =k*(0), ¢"(1) =c*(1). -

The trapezoidal rule with 16.nodes on the interval [0; 1] is used to discretize
the integrals for all the examples. The numerical simulation here is carried out for
five examples. The numerioal results are plotted in Figs. 1—>5. The maximum norms
of [5"(2) — %" (&) |- and {c*(2) —c*(®) ] for various cases can be estimated from the

exact solution
20K\ —-— 1nitial guess

iterative salutiaon

. il my ot ; ! X : -_ 2 :
i L e S OO LR :'..l.-... . I : ; —
b oy ik(:, i i1 3 i I}
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(%)

graphs in these figures. The Ls-norms &= |5° (2
for various cases are tabulated in Table 1. & and
of iterative oyocles for the numerical examples in
Fig. 6 and Fig. 7 respectively. | "

2.0

c{x)

Y —k*(z) s and €= le" (@) —c" () | s
¢ a8 two functions of the number
Fig. 4 and Fig. b are shown in

Table 1
I’
Fig. ! 1 2 3 4 A
& 3.52 2.53 0.68 0 - 0.67
o 10.062 - 0.097 0.022 0.0016 0.016
& 6.33 1.0 2.02 3.50 5.5
o i 0.094 0.069 0.026 0.021 © 0.015

16 -=_.-_rﬂ-'i*.~._;|'1'z.;tj

AR i
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3. Discussion

In the earlier paper™, we studied the general oharacteristics of PST. It is
still effective for the inverse problems with multi-parameter to be determined. In
addition, it should be pointed out that: | E

Both the number of frequency sot and their values &,s affect the acouracy of the
solution. The fewer the s, the rougher the solutions. However, if too large a number
of &8 i8 accepted, the condition number of the linear systems of equalions from the
discrete Fredholm integration of first kind will be too large. So the proper ‘choice of
the et 8, is important for acourato and stable solutions. Hagin™ proposed:a well-
conditioned matrix oriterion for choosing s; in solving the Fredholm integral equation
of first kind with oscillatory kernel, It can be employed, but not always. Fortunately,
when ‘we solve the Fredholm integral equation of first kind by using the Phillips—
MTikhonov regularization method, the “amooth functional involves -second—order
siobiligers with constant coéfficiénts™®~5%; " the regularization parameter Was
decreasing with the iteration; then the change of the set 8=, results in no gignificant
differences in solutions. Se¢ in this paper, we 56l 8= §; j=1, 2, »-+, 11, in all the
examples. . .

From the derivation of the iterative numerical algorithm in section 2, it is
olear that there is no restriction on space dimension Or the type of differential
operator L for our algorithm, whether L is hyperbolio or parabolio. _

The main problem of the numerical algorithm is the consumption of computer
iime. The direct problem (11), Green’s function and Fredholm integral equation of
first kind (17) should be solved in each iterative oycle. We ocan solve (11) and
calonlate Green’s funotion with respeot to the same differential operator L* simnl-
taneonsly. Actually, we can avoid calonlating Green’s function, if the algorithm is
derived in a different way; bus it is beyond this paper. ”
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