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. ORDER INTERVAL TEST AND ITERATIVE
METHOD FOR NONLINEAR SYSTEMS®

- L1 Qive-vane ($545)
(Qinghua Undversity, Beijing, China)
~ Abstract
_ An order interval test for existence and mmasbluﬁnﬁa toa nonﬁﬁear sysl:en;is 'giveﬁ. It
. acmhines the interval technique and the monotons iterative technique. It has the main merita of interval

jterative methods but need not use interval arithmetic. An order interval N awhon'm&hhodisﬂlso given,
~ which is globally convergent. It is a generalization of the results in {3], [4, 13.3], =

1. Introduction

Suppose we have & nonlinear system
’

: f{z)=0, (1)
where f: Dc R*—>R" i continuous on D. Moore and L. Qi introduced interval tests
for existenoce and nniqueness of a solution 10 a nonlinear system in [1, 2]. However,
the interval arithmetic is complicated. In this paper, some n—dimensgional order
inferval iterative methods are presented. They can also be uged as interval fests for
existence and uniqueness of the solution to (1). Since they use endpoint caloulation
instead of interval arithmetic, they are simple.

In soction 2 a simple interval Newton method and its global convergence is

given. In seotion 8, an order interval Newton method is presented, which is a gene-
ralization of the Newton monotone iterative method given in [8], [4, 13.3],
The notation is as follows. Let B" be the n—dimensional real space and L(R")
the space of all real nXn mairices. or vectors 2, y & B® and matrices 4, Be& L(R"),
wo denote the usnal componentwise parfial orderings by <y and A<B. If AB<I
(BA<I), where I ig the identity matrix, then A is called a left (right) subinverse
of B. If A is both & left and a right subinverse of B, then A is called a snbinverse of
B,

Lot X = [z, 7] = {u|z<u<z} be an n—dimensional interval veotor; it is an order
intorval, W(X)=2%—2 is called the width of the interval vector X = [z, ], which
is a nonnegative vector. We bave the following properties of W (+):

() SWOX) =AW (X), AER' and >0, -'
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2 Order Interval Test and Simple Interval Newton Method
Let X =[z, £] be an arbitrary order interval, i. e. X:= fulg<u<z}, PE
L(R") is a nonsingular matrix. |
Define | :
Nu:=u— Pf(u), YuCR® (2)
for any order interval X =7, z] Then N i8 an interval operator,
Temms 2.1. Supposs f:DCR*— B° is continuous and there i3 & mairiz A &

and

L(R") suoh that _ | _ |
@ -f@<AG-), 2<%, 2 T€D,: 4
If A has nonnegative, nonsingular, left subinverss P, then | |

- {Nuluc X} NX - S | (5)

for angy X = [o, 5] CD,
Proof. Yu€ X =[gz, z]cD, by (4), we have
Nz— Nu=z—u—P(f(=) -f(u‘));z-%—u—PA(E—u’)?O,
A .
? Nu—NE=H“E—P(f(“)_"'f(E))?““ﬁ“Pﬁ(“—E)}U;
i. 0. Nz<<Nu<UNz, i. . (B) holds, | | | |
Lemma 2.2. Suppose the conditions of Lemvma 9.1 hold and X = [@, z1C.D s an
order interval. Then N X contains all solutions of (1) in X. If NXc X, then there us G
solution of (1) in X.If X N NX =0, then there is no solution of (1) in X,
Proof. Suppose «" is a solution of (1), o€ X, Then

g =a— Pf(a)=Na"ENX,

Therefore, N.X contains all solutions of (1) in X. This implies the last conclusion
directly. Since f is continuous, 80 18 Nao~=z— Pf(z). By (4) and Brouwer’s fixed point
theorem, we know jhat N has a fixed point in NX if NX — X . But all the fixed
points of N are solutions of (1) and vice versa. This proves the second conolusion.
Lemma 2.3.. Suppose the conditions of Lemma 2.1 hold and NXcX; then

I NNX)CNX, | | (6)
Proof. By (6), webave - |
g ' N(¥NX)=IN(Nz), N(Nz)]cNX
aince Nu, NEENXSXE, & - "= 7 ~
Now we construct simple interval Newton algorithm: - - - |
Algorithm 2.1. Let X%={a?, 2"]ZD, For k=0, 1, «-, if X*N NX*=0, then
- stop; otherwise, let X"*1I=I"ﬂ_.ﬁNXj‘_g e osmgr 4 g, G s S n
., _Theorem 2.1. Suppose the conditions of Lemma 2.1 hold and X°CD is an
~ order '@maz, {X* k=0, 1, -, Y i produced by Algorithm 2.1. ‘Then “all _the
éoﬁtm of (1) én X° are also in X* for any nonnegabive integer k, If X*[1 NX*e=0
lition of (1) én X°, If NX*CX* for a certain k,

(YR L I.'l'l i ,.;-'”1
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(1) there ewists a solution of (1),?}?} X

(i1) NX"C X" for m=Fk, k+1, | | % 5

(11i) {@’"=Nm”'*1, m=k+1, -} :md {:1: =Nm’“‘1, Ty = k+1 .« } converge,
hmm =", Ilma:"==::': '

(iv) &° and z* are solutions of (1) in X" )

(v) If z* is a solution .of (1) mX“ th@n #'<a'<z", Ifa"=1x", then " =2" is
the unique solution of (1) in X°, .
"~ Proof. The first and the second conclusions and (i), (i), (iii) are dlreet
oconsequences frcrm Temmag 2.1, 2.2 and 2.3. Smﬁe

@ nl]m m“‘=hm Ng"t=Ng' =g ;Pf(:s)

and P is nonsingular, we know that &" is a solution of (1). Stiﬁahdrly foi' ':'z:"
Thus we get (iv). If 2* is a solution of (1) in -X° then m“@m Qm" for rm.=uTc—I-1
i.e. o -hm <o <lim 2™ =2", Thus we get. (v), A : o

i—s o

Thenrem 2.2. Supposs the conditions of Theorem 2.1 hold and NX“C.'.‘X“ If
there exists an n X n malriz B such that - ~

f(=) -—f(@)?B(m-@).. | V@*@, z, ZED - 7
and if .
g |
. R;W Xﬂ
. 5-21 bl & ){1, (8)

1l<icn W(.X“)

where R=(Ry):=I—PB>0, W(X{)+0, ¢=1, -, n, are t?w mdﬁh af XL then (1)
has a tmc»gw solution 2" in X°, and the iterative seqwma

P gb PF(#), k=0, 1, _' ) '(9)

converges to * for any sterting point 22 € X°, with the error estimate :
| — 2" | <BW(X®), k=0, 1, (10)

Proof. By Theorem 2.1 we already know the existence of the ﬂolutmns of (1)
in X° 'To prove the theorem, it suffices {0 prove that |

W(X*)-gﬁkwtzﬂ) k=0, 1, - . ,; @

By mduﬂtmn and -
| W(XHY) = W(NXP) = NP~ Nob =P~ — P(f ()~ (&)
<z¥—a*— PB(z*—o*) = (I*PB)(E‘—Q:")=RW(X")

W (XE) <3 Ry W (XT) =3 Ry W (X7 5k ’lﬁﬁw(ﬂ) riax J(XD)

WX o WD
we got W(I’)-QB“W(X) te=1 oo, m, f== O, i e I
1. e. wo got (11). Moreover, if 2°€ X?, then . o Bt _, 3 3
R W "’”""':;i"__ : Nz"EN X XHIL k==0 1, eer ,f;._'?.‘: sl Five s A

implies ]Jm z_"-m SiIlBB #* and 2" are in X%, ‘we get 10),

. Rama.rié 1 SEPPOBB tha mndﬂmns of Lemma. 2 1 hold and thara 13 J:“u
[_“ a:"]f:Dsuchthat | it T b g Mo

LA T RN ey by RS SR R Mndien T

4 f Xt g, u _".. ::,f"'"-f.‘*?. '.’{E. o b f (ﬂ-’o) Qﬂﬁf (50) g 8% ekl £ (12)
Then NX“CX“ and vioce versa. b



. 53

“No. 1 ORDER INTERVAL: TEST AND ITERATIVE METHOD ...

. The. reader may cheok this himself.
Remark 2.2. If thereis X0=[a", 1°] D such that o
Fi@f(EN<0, =1, «,me (18)
then there exigts t]:ie'd'i'a,gona.l J =diag (J 4, =+, J o) such that
- (14)

Jf (@) <0<Jf(2),
1, i fu@)<0,
T - J‘={-—"1_. CHE - fl@)>0, o '

Proof. By (13}, if fi(e") <0, then fi(z°) =0, so that J ¢==1a,nd Jofi(2%) <0<
T, If fu(a?)>0, then f(E)<0, so that Ji=—1 and J.f (@) <0<J fi(7°).
We get (14), ity =~ 2 &7 | "

‘Therefore, we may use (13)

instead of NX°C X?° in Theorems 2.1 and 2.2,

'3 Order Interval Newton Method

~ The simple interval Newton method (Algdrithi:n 2.1) is linéarljr oqnvéi_'gent.
To improve the convergence rate, we give the order interval Newton method. We
use order convexity. Recall [4] that f: DCR*—>R" 8 order convex on & convex sel

D, if p .
e 9 fO0z+ (I-DN<AM@+A-Df@® -~ (16)

whenever @, y €D, o<y 0T Y<% and AC(0, 1), -
Also recall that if f is G—differsntiable, Then.

only if

f /s order convex in D if and

F)—f@<f @) (y—2), 2<y, 3 yED. (16)
By (15) apd (16), we have N
1(§)—f@)<f'(@)(y—2), »<Y, =, YED.

Théref_nre, we get the following Lemma.. L - _
Lemma 8.1. Suppose fi1DCR—>R" is G—diflerentiable and there. i3 @ nonsingular
matriz P € L(R"), suoh that F=Pf is order conves in X°=[2, 71D, Then
| - F(e)@E-a)<F(@)-F(2) <F'(z)(z—2) (18)
for any &<3, @, TEX'=[2%, ¥l sl '
Now we define the order interval Newton method as follows:
. Algorithm 8.1. Let X?={2’; 21D, ‘For k=0, 1, -, define
WhBI'E - X¥ = [Ekl Ek],q."ﬁﬁ=m_f@k)rif(¢), V@E‘ZF‘ i s -
" Theotem 8.1, Suppose f:DC R is G-difforantiable and f'(@) is ndnsingular
in D,  Suppose there are X°= (2, 1D and @ nonsingular matriz P € L(R") such
g @ PF@<0<PI@). - B (e D
Let F _-=Pf_ be order conves in X° and F’ (2)~120, Vo€ X° . Then (l)hﬁsmﬂnw
solution «" in X ° and-the conolusions ()—(v) of Thmlehold A;fweowr,_if W
L e @ -P@l<rle=gl, ow€X? @01

(A7)

(
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then the interval wvector sequente {X-", k=0, 1, -} defined By (19) converges to &

quadratically, |
Proof. Because P is nonsgingular, s0

779 F (@) = [Pf (3] *Pf (@) —1'(B) Y (a).

Therefors,
Nw=a—f'(#)7f(2) ~g— F'(g¥)7F ().
Gince F (&) is order convex in X° it is continuous in X° (see [6]) and (18)

holds. Since F* (z)~*>>0, we have
PGP @GE-D<F®)
We get

and.: -

Now we prove that
N, X*C X* and F(a") <O<F (5,

By induction and (18), we have |
F()>F @)+ F@HE—77)= F(31) — B @O F' @5~ F (@) =0
e < F (@ P @) @) =F@ ) - F@F @HTEED.
Sinoe F’(z*)"*=0 and (21), we get -
oy (@) < () F (@) — F (@) F @ F @) 7 F @)
— [P — F (@D F (@<,

i. o. F(a*)<0, Therefore, by F'(z%)~*>0 wo have
N gb— b= — F'(z%) " F (") <0,
Nyt — = — F/ (2%) 72 F (2) >0,
i o, N, X*cX* Thus we get (22). Acocording to Theorem 2.1, we

(i)—(¥) of Theorem 2.1,
The proof of nniqueness and quadratical convergence may be seen in [4, 13.3],
If F= Pf is order ooncave on X 0 ipstead of order convex, we get

F(@) G- <F@-F@<F(@G@-2, % €D, z<z,

Then we define the order interval Newton method ag follows:
-, define

Algorithm 3.2. Let X0=[2°, 2%]cD, For k=0, 1, -
Xk+1=ﬂﬁzh= [El_.mk: -Z_Vh?]; | g

where Xt [, 7], Nyw=o—F (@) f(2), YEEX.

Similarly, the conolusions of Theorem 3.1hold. -~ . - A = |
Bomark 1. Lot P—I; tho endpoint sequonce (=T k=0, 4 <3 o
(19) is the_same o the sequence defined by the m otone_Newion

r4, 13.8, 41). Therefore, the order interval Newion methods (19) and (28) are
gape:&lizatiOna_ of the monotons Newion method.
" Remark 8.2. IfA = () is an M-matrix, then A= F(2) =0, s

. Boemple. TLettE - TH . |
odd e -."‘rff,(m_f):(;“ ﬂa-i-ﬁﬁi-ml_j—ﬁmﬂ_g) Xo 1 3 !!“('Bj],; ;5.
- e tdm—ai—19 /7 T [ABF \B/)

) (G—a)=E—2, Vo<, @, TEX".
F!(z) 1 F (2) <I -

P)I<F (@), Ve<z, =, 2€X% (21)s

kﬂol‘_l} "'.. (22)

get conclusions

(23)
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| - 18 e | —3:B |
Sinoe f(g) (__28)’ f(m)—( bb )
we have P=(_jL 0)- Lot - .
o 1/ - -
[ I AN L 32§~ 102, +1 .
F(m)r—Pf(m)-( fa ), F(ﬂ’)—( _1 3;,;34_2:1;,-—14)’

where F'() is an M-matrix in X ¢, We get -
7(2) G—2)<F (@) —~F(@)<F'(3)E-0), V2<s, g, s€X,
- 0.02042  0.0005672

ﬂnﬂd F.r T —1;51‘7!-’ mﬂ -1
T AR ) (0.0002876 0.01409

Therefore, the conditions of Theorem 3.1 are satisfied, and f(z)=0 has a unique
solation * in X°. The results from use of Algorithm 3.1 are given in Table 1,

),30, Voc X°,

The exaot solution is &= ( 4), and we get

£ (5.000{]{}04) "
Tt = =2,

4.0000047
N ¥ ' Tale 1 .
P g [, 7] |« e ¥, T
e @ | | R Caw))
: ey sy | (G ) (oo )
: et

——____——_—_———__——_-_____-
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