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“ 1. Introduction
Lot H be a real Hilbert space with inner product (», «) and reduced norm h+1.
An operator A:H — H ig said to be strongly monotone with modulus a>0 if

(M_A‘y: m-——y)_}aﬂm—yl", vV, ?IEH.
Tt ig said 10 be monotone if the inequality above ig valid for «=0. Furthermore, it id

maximal monotone if it is monotone and its monotone proper extengion does nob

exist.
Let A be a strongly monotone operator as above, and b€ H a definite element.

The present artiole is devoted to a study of the operator equation
Az=b, (L.1)
which is often deduced from practical problems in the fleld of differential equation,

variational method and optimal ocontrol (of. [5], [6] and [7]1). The iteration
schemes we will use is

$n+1=mn+ﬁn(b "'A-mn); (1'2)

where {f,} is 2 parameter sequence of positive reals.

A special form of equation (1.1), #4-Bz=>5, where B is a monoione operator,
has been disoussed recently by several authors. Using the schemes (1.2), R. E. Bruck,
Jr.! proved its local convergence on the agsumption thai the equation is solvable;
W. G. Dotson, Jr.2' agsumed B 10 be nonexpansive; and You Zhao-yong™ relaxed B
into being Lipschitz continuous and then proved its global convergence. Ingtead of
(1.2), 0. Nevanlinna® applied the iteration

B 1=Tn+ bn (D — Ap4- Opmy) (1.3)

and, supposing that B is continucus and bounded and gatigfies a linear growth
condition respectively, proved the global convergence of (1.3). In his results, for a
continuous B, it is required that at each iteration step the paramelers i, and &, be

* Received Boptember 10, 1982,
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chosen on an optimum condition which is concerned with the operator itself, and,
for a bounded B, use of a so called reinitalization processes demanded,

However, in practice, the local convergence and the dependenoe of the choice of
the parameter f¢, upon the operator itself constantly cause inconvenience, and in
many practioal problems such as the nonlinear elliptio boundary value problem to be
studied in section 8, neither the_s Lipschitz continuity nor the boundedness, nor even
the general continuity, can be guaranteed for the operator. Therefore, we will try
here t0 weaken the assumpiion of continuity, boundedness and linear growth
condition on 4 (for equation (1.1)), and on this basis establish ihe global con-
vergenoe of (1.2) with the choice of the parameter being independent of the operator.
As an application, we will also try t0 provide a convenieni and efficient iteration

method for finite element approximate solution of the elliptic boundary value
problem (1.8). -

2. Global Convergence Theorems

We first introduce the following definitions:

Deﬂnitio;l 1. Let g: H—[0, oo) be a funciional which maps any bounded closed
conves set o H into a bounded set in [0, co). An operator A: H—>H is said to be upper
controlled by the functional g if

|4z <g(a)
18 valid for every 2 € H.
Definition 2. ZLet ¢:[0, oo)—> [0, o) be a continuous real Junetion with the
properiy p(0) =0. An operator A: H—> H is said io have the conténuity of the wpper
conirolled function @ provided '

q | dz— Ay| <p(|o—y|)
¢8 valid for every z, yC H.

From the definitions above, an operator having the continuity of an upper
oontrolled funoction ¢ ig also upper controlled by the functional g(z) =@(|le—a°| +
| 44°() where 4° ig arbitrary in H. For an operator A that satisfies regpeotively the
boundedness condition (i.e., 4 maps bounded gets into bounded sets), and linear
growih condition [ Az|<e(1+ Jz|) (one of the assumptions of [4]), there naturally
exigt funotionals g(z) = | Az| and g(&) —=e(1+[z|) such that 4 is upper controlled
by g. Also, an operator satisfying the Lipsohitz condition | Az— Ay | <Llz—y| (the
assumption in [3]) has the continuity of the upper controlled function @(¢) = I¢, and
an operator which is upper controlled by a functional g may be discontinuous.

Set
R(z) =1/a(|b—Ax}), (2.1)
Uz, 8) ={y€ H||y|<(B(z)+8)¥%, (2.2)
M (z) =sup{g(¥) | |y]| < (R(z) +8) 2+ R(0)}, (2:8)

where € H is arbitrary and 8 ig a positive real number.

Theorem 1. Suppose that the strongly monotone operator A i3 upper controlled by
¢ functional g and egquation (1.1) is solvable. For any initial value wvo & H, choovse &
sequence of positive reals {t,} satisfying
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1) 0<Fa<1, B=R(zo) (B(zo) —1), n=1,2, -,

2) the samscz ta diverges but Z £2 converges.
. | )

Set ¥ | S P—Et

n)

- mm{l 1/2a, Ta/2M (%0 }.

Then the seguems T pmduced by (1 2) with i, chosen as above converges lo tfw unique
solistion of eqmtm (1.1).

Proof. Let z* be the u:tuque solution of (1.1) (the uniqueness follows from the
Etrong mﬂnotommtjr of 4). =" satwﬁes the following 1den’ﬁ11;y

=" +1t,(b— Az")

for each mteger n. We first show z,—a" €U (2o, 8) for each n. For n=0, it i3 a.pparent
from the definition of strong monotonicity of A that -

o] o —2* | 2< (Aa" — Ao, o*—20) < (b— Ao, 2° —20) = | b — Az llm*—moﬂ.
By the ohoice of {p and (2.1) we have |
|zo—2*| <1/a|b— Az] = R(z0) < (B(@o) +15) /< (B(m) +8)7.  (2.4)

Thuy @we—a" €U (20, 3). If we ssume that Ty~ T EU (@o,. 3) has been proved and
|@p—2"| satisfies °
1/

e—a'l<( B + 2B) , @5
it follows from the iteration (1.2) t]:iat' .
g =" |2 |0 — 2" |2 2tn (Aza— A2, @y—") +13] Azy— A2"|*
Y < (1—2aty) | 2y — 2" |2+ 8] Az, — 42" |2, 2.6)
Noting that substituting 0 for zo in (2.4) gives o
12" <R(0) <R(0) + (B (zo) +8)/?
and that, by assumption (2.5), 3

o] <lan—a| + ol <( Blao) + 28 +E(O0)< (Blao) +5)1+R(0),

we see that | A2"| and | Az, are hoth bounded above by M (mu) "T'herefore, toge’ﬁher
W1th the definition of ¢,, (2.6) implies s

Imn+1“m |2< (1 —2axty) | 00— " |+ 4 M (20) 1,

x\:( R(x,) + 2 t;,,) +t2=R(mu)+2 12.< R(mo) +9, é.?i

T 2’| <( B (mﬂ)+§] 72 )m<(R(¢n)+a)w and @y, —2"€ U (%, 8). By

the principle of induction, the agsertion holds for each integer n.

We now prove the convergence of z, 10 2. Because, by recurrence on index n,
(2.7) yields

n—1 : "
H Tas1 ™ H {H (1— 2&:&) | @0 — 2" (H (1 — 2aty,) t"'-l— t’*):] (2.8)
it is sufficient to justify thafn the rlght terms of (2 8) tend to zero as n—> o< respec-

tively. By the hypothesis, the series > ¢, is divergeni, and so is the series >t Ada
@ Y
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result, kIl (1—2aty)—>0 (n—> oe::) and, therefore, the first term of the right of (2.8)

tends 10 zero. To show the last term also tends to zero, we let
n—1

@o= I1 (3—2ats).

k=4

Clearly, a,;<<1 and a,;— 0 for any fixed j from the argument above. Given &>>0, we
choose a positive integer m. so that

oy

XY Beig/d "

E=m+1

and, for such m, choose N so that a,;<e/2 whenever n::?N and 1<j<m (both are
possible because, by hypothesis, 2 ¢ is convergent and gn—>0). Then, for any

ey
a>max{N—1, m}, it follows that

n—-1 sn-1 ” . p—1 L | 1
D [1(1—2at,,)t§)+t§=gaﬂjﬁﬁzqa-mx{%, deg, **y G} + )
 §=0 \k=§ §=0 | k=m+1
<8+8/(20) +8/2=s,

which shows that the last term of (2.8) tends to zero, too. The proof is compléted.

Remark.” O. Nevanlinna™ proved the global convergence of (1.3) for the
maximal monotone operator 4 on the assumption that it satisfies linear growth and
boundedness respectively. In contrast, Theorem 1 is proved for the strongly monotone
operator A; it does not require maximal monotonioity, but it uniformly relaxes the
assumptions into control by a functional g. What is more, the reinitalization is
dismissed from iteration (1.2). '

The following corollaries contain and generalize all of the results egtablished by
Bruck™, Dotson'®? and You™. Especially, they allow to weaken the Lipschitz
continuity in [8] into general continuity. - -

Corollary 1. If H is a finite—dimensional space and A is a continuous strongly
monotone operator, eqmation (1.1) is solvable for every & € H, and, for an arbitrary
initial value @, and for ¢, chosen as in Theorem 1 for g(#) =|Ae|, the S8 UENCe T,
produced by (1.2) converges t0 the unique solution. | |

Proof. A i3 maximal ‘'and coercive by its continuity and strong monotonicity.
Henoce, the solvability of equation (1.1) follows from the standarded existence
theorem (of. [5], Th. IV, 2.11). Obviously, g(z) = | Az| is now suoh a functional as to
upper control A. From Theorem 1 the conclusion follows. Q. E. D.

Corollary 2. If equation (1.1) bas an inner point #" as its unique solution,
there exigt a (spherical) neighborhood N (2%, ¢) of " and a positive integer M: such
that, for any initial value @y EN (#*,¢) and 2, defined as in Theorem 1 with M (wo)
=M and 5<¢, the sequence @, produced by (1 .2)converges to the unique solution z°.

Proof. Since " is an inner point, the local boundedness of a monotone operator
(¢f. [B], Th. IV, 2.2) implies that there exist a (spherical) neighborhood N (2, 2¢)
- of 2* and a positive integer M such that

| Az|| <M, VYzEN(a", 20), | | {(2.9)
~ Now we have 2, EN (2", &/ 2¢)C N (o, 2¢) for each integer n. In fact, this is trivial

e o p—1_ \1/3
for n=0. If we assume x, E N (&*, ~/ 2¢) to satisfy |z, —a"| <( ¢ + Etﬁ) ,. then for
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ne=p-+1, by reasoning similar to (2.6)—(2.7), we obtain

.._ ?
| @pp1— 2" |2 g — 2 |2+ 127+ D) T2 <03 482 < 202,

=0

Then it follows at onoce that z,,41C N (2*, v/ 2¢) satisfies ﬂa:,+1—m*ll"é< ¢? —I-g ra )m,

t00. By induction, the claim is true. By (2.9), it shows that _
|42, — Az*|<2M, n=0,1, 2, -

For such a specified M, repetition of the proof on oconvergence in Theorem 1 will

finally lead to the corollary.

Note that Theorem 1 yiclds a olass of iterations with the property of global
oonvergence; the convergence rate depends on the choice of parameter f, and initial
value #p. Also, it is easy to see that the larger f, is and the smaller M (2,) is, the
fagler convergence rate the iteration (1.2) has. Therefore, in order to make (1.2)

converge fagter, it is nevessary to choose ¢, and initial value x, as large and near 0
the real solution as possible.

We now consider choosing t, as large as possible io speed the convergence rate of
(1.2).

Theorem 2. Suppusa that the strongly monotone operator A has continuity o f the
polynomial

@ (A) =aid+ agh?+ -+ ayd¥,

where N 8 a definite integer and o, € [0, o©) are not aoll zeros (k=1, 2, «--, N). Then
equation (1.1) has the unique solution %* and, for any initial value zo € H, if we choose
t 80 that

0<t<t",
where t* is the unique positive root of the equation

B« 3‘( i G LR () ?hh—:l.)ﬂ =(),

k=1

then the sequence z, produced by (1.2) with #,=¢ cﬂﬁwges 1o the unique solution z°, and
the following error estimate

j2a—a"| <8/ (1— B)at R (o) | (2.10)
¢ valid (0<<B<1 constant).
Proof. Define function ¢r: [0, c0)—[0, o) ag

1/9

i,b(}.)=[1-—2at—l—(gakﬂ."'1)ﬂ] ,

whioh is obviously continuous and increasing. We have from (1.2) and strong
monotonicity that

" Tuy1— Tp)* = || Tn— Bu_y “ T— 2t (Azy— Ap 1, Ba— Tn_1) +1?| Az, — Az,_3 "’
N 2
<(1~2at) [0 —an_s|*+ £ 3} anlla0 — @ps]*)

] PR L PR )
(also using the hypothesis about A), i.e.,

‘l“’wl“mn"‘g"“’n_mn-inlp(”mﬂ“mﬂ—-iﬂ). (2.11)
We now prove that for any integer n the following
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|%a11— 2] <B"taR (o) (2.12)
holds, where 8=1(|@1—2[) and, from (1.2), (2.1) and the choice of ¢,

=y (o1 — 20|} =Y (atB(20))
=1 —2at 412 im R e 2{1

For n=1, (2.12) is obvious because (1.2) and (2. 11) imply the inequality:

| @3 — 21| < || @1 — woip (| 22— 2o | ) <taR (20) B,
If we assume (2.12) to be true for n=p—1, using the inocrease of ¥y, we have

| Zpsa— 0] <@g — g1 | (29— 251
<B*YatR(@o) (B R (20)) <B’taR(zv),

which indioates the trueness of (2.12) for n=p. By induction, (2.12) is true for any
integer n.
Now, for any positive integer m, it follows from (2.12) that

n+ne—1 n+m—1

|Zasm— 2l < 2 21— 2| < atR (@) B¥<B"/(1—B) (atR(xo)). (2.13)

]f— i'c—ﬂ.

Since 8<1, |[Zuem—2a]|—0 (n, m—>o0) and hence {#,} is a Cauchy sequenoce. Let z*
be such that e#f—>z* (n—>cc). Then (1.2) and the continuity and strong monotonicity
of A together imply that 2" is the unique solution of (1.1). Finally, taking the limit
as m—> o0 in (2.18), the estimate (2.10) follows and henoe the proof is completed.

Remark. The hypothesis of Theorem 2 ig clearly sharper than that of Theorem
1, yet it is gtill weaker than that of [2] and [8]. Particularly, the present hypothesis
guarantees that (1.2) converges at a rate of a geometric series.

3. Application

We now apply the result to finding the finite element approzlmate solufion of
a olass of nonlinear elliptic boundary value problem.
Let H? (Q2) be a (2, m)-th Sobolev space on which the inner product and norm

are defined regpectively by
(u, v)= > | Du-DFv da,

i@jam ./
e = (u, ©)m,
where a = (ay, a, -+, a,) € Z%, 4% being the (Cartesian produot of n spaces of
nonnegative integers, |a| =a;+ag+-++a, and
| o'l
o> .. -3:1;‘,::'

For given a bounded open subset £ of B*, we suppose that its boundary 22 is
saoh that the Sobolev Imbedding Theorem holds, we consider the following 2m—th
order elliptic boundary value problem:

{ M (=1Dl=Dr{A, (&, u, ++, D™u)} =0, xC Q,
|| < m (3 ’ 1)
DPu(z) =0, c€08, V|B|<m-—1,

For every u, v & HJ,(§2), define the quasibilinear form ag

Doy =
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By, v)= 2] A (z, w, *-, D"‘u) Dy de, (3.2)
Iu < : . o
Suppose tha.t (3.1) satisfies the follnwmg T | .
i) The funetion A,(w, u, ---, D™y) is measurable in z €2 and continuous in its

other argument %, -+, D™u for ﬂ.ln:mﬂt all » € 2, and there exists a nonnegative
continuous function g on [0, +o0) such that

| 4a(@, 4, -, Do) | <{g( 2 [ D%}

IBI{m—%
i+ B |Dul+ B | Dou|em},
|8 ~--ﬂr:—E m—-%-:: 8| <m

for all || <m, almost all #€ 2, and all D"y, |y|<m, where
gs=2n/(n—2m+2|B}),
{1, || <m—n/2,

ik _
P | 5t+m—la)/n, |a[Zm—m/2,
ii) Strongly elliptic condition, i.e., -

B(u, u—v) —B(v, y—0) = 2 (As(z, Du) — Au(w, D), D“(u fu))';aaﬂu—wﬂa

Vu vEH,(2), u— ‘I.?GH“ - (3 8)
Recall that v € H > 18 a generalized solutmn of (3.1), relatwa to the space HY, if and
only if | |
B(u 1:) =0, VYveH?, © (3.4)
Let S, be a finife element subspace. By the finite element method- for approximating
the generalized solution we mean to find u, € 55 so that

B, v) =0, Yo ES,, (3.5)

The following result has been proved in [7].

- Lemmal. B(u, v) in (3.2) is a bounded linear fwnctmml of vEHY, for each
uwC HY,, and there ewists a continuous functional h(u) independent of v such that

| B(u, w>|<h<u> 10wy, VoEHS, (3.8)
where
rw={lgC 2 10%])]-} {(meas ¥+ B | Douls+f(w)},  (3.7)
Jﬂlfm"g— i.ﬂl—m—ﬁ-
b 3 4Dy, lal<m-%,
f(u) - m—5< |8 <m i g
B 3 (1Dl e, lalmm—5

7% :

and k1, ks are constants.
As a consequence of Lemma 1 and RIBSZ s representation theorem, there exists

Tuec H)(Q) for cach u & HY, such that
(v, V)m=Bu, v),
[Tu] <h (u).

It ig eagy to justify from hypothesis ii) that the operator I': Hy,~> H, defined by (3.8)
ig a strongly monotone operator with modulus >0, i.e., it satisfies '

(3.8)
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(Tu—Tv, u—v)=alu—[2, Vu, v€EHny, (3.9)

Now, let ¢, 1<<i<<n, be a basis in §). Sefting a general element ¥ & S, a8 u=a1P,
+@aha+ -+ + Gupa, We establish the homeomorphio map between §, and R", denoted by

&, as follows
G

“= Eﬂk%:ﬂ;—@.(ﬂh @2, % w").r" .

5 @ | 5 /2
luln =2lal =( 3} af)
-1 _ k=1

and assume that the equivalence relation between |u] and |af is

eifa) < u|m<ca|a|, VuES. (3.10)
By virtue of &, we then deiine a new operator F:R"— R" by |
F(ﬂ) = (B(Gﬂlﬂ': ¢’1) ’ B (G_l‘z: ‘;6.‘2) y Ty B(G-iﬂ: '?E’n)) . E (3 11)

With this, after denoting by h(a) the functional A(G(w)) transformed from (3.7),
we have : |

Lemma 2. The operator F defined above is a strongly monotone operator with
modaslus cfa:?{l and is wpper controlled by the funciional

@ =(34i2)” A

Proof. Let a=(as, G, =, @), b=1(d1, ba, -, b,)* be arbifrary elements in

L

R* and G(a) = D avdy, G(D) = Eﬂ;lbktﬁmESh correspondingly. By (3.8), (3.11)
=

| k=1
and Lemma 1, it is obvious that

(F(a) ~F (1), a~b)= 3} (B(Ga, du) —B(G7S, ) (me—bo)

— 3V [B(Ga, (@i—bs)Pr) —B(G, (@—~b)do)]

k=1

-B(@%, 3 (@—b)bs)—B (6%, 3 (@ — b))

k=1

- (TG (a) TG (), GH@) —G*(®)

>a|G e~ G| i=clala—b|%,

which shows the strong monotonicity of T. Again, from (3.6) and (3.11), we have
F@ 2= 31860, ¢0< 3} Il (@) <1 (@),

which shows F is upper controlled by A. Since % is continuous, S0 ig k1. The proof
therefore ia completed. o | ’

Lemma 8. If a° is the solution of equation F (@) =0, then v, =G’ i8 a finite
element solution of the problem (3.5) on subspace S.. Conversely, if u, s @ finite element
sclution of (8.8), Guy is the unique soluiicn of equation ¥ (a)=0.

Proof. If a° satisfies F (a®) =0, it follows from (3.11) that

B(Ga®, ¢y) =0, k=12, =, m,
Therefore, B(Ga°, v) =0 for every v &S, since v is a linear combination of ¢p(k=
1, 2, ++s, n), which indicatfed Q1% is the solution of (3.5). Conversely, if us
is the solution of (8.5), it satigfies - ‘
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: B(ﬂh: 'U) ='O: V'ﬂ ES&
and, in particular, B(u,, ¢) =0 for each %, 1<k<n. Honoe, F(Guy) =0 and Gu, is
the unique solution of equation ¥ (a) =0,

By the lemmas above, we can now safely say that finding the finite element
solution of problem (8.1) is essentially equivalent to constructing the solution of
equation F(a) = 0. Note that, under our assumption, there exist the generalized
solution and finite element solution to the problem (3.1) (ef. [7]), and fo equation
F(a) =0 ag well. Further, if the unique solution of equation F(a)=0 is a®= (af,
as, -+, a), the finite element solution of the problem (8.1) on subspace S, is then
given by

Uy =G g% = i G, Ox.,
k=1
To summarize, by denoting
B(z) = (1/cie) + | Faf,
Ue, 8) =y R ||yl <(R(2)+8)¥7},
M (2) = {h(a) | Ja] < (R(2) +8)**+ R(0) }
and applying Theorem,1 (or Oorollary 1), we obtain at lagt the following

Theorem 3. For any initial value o= (2, &§®, -+, &), chovse any sequence
{¢a} of positive reals that satisfies

1) 0<t, <1, =R (%o) (R(mo) —1), n=1, 2, +=s;

2) series ) t, diverges but > £2 converges, and set

{m) in}
O=3132

(1)

ta=min{l, 1/2ac3, I,/2M (2,)}.

Then the sequence a™ = (a{™, af™, s+, ai™), and up— > @™ by correspondingly,

: k=1
produced by
qimtl) — a‘m™ — th (ﬂ(ﬂl}) ; (3 ; 12)

converges to the unique solution of equation F(a) =0 and the finite element solution of
the problem (8.1) on subspace S, respectively.

Remark. Using an iteration method to find the finite element solution of (3.1)
was first snggested by Li Kai-tai and Huang Ai—xiang in [8], to avoid solving
nonlinear simultaneous equations, which is often very complicated. But, in their
iteration scheme, it is required to caloulate the Gramian matrix of the bagis {¢} and
to determine the parameter ¢, at each iterative step through an integral evaluation.
Theorem 8 obviously overcomes all these difficulties. Therefore, the iteration (3.12)
is more convenient and efficient in generating the finite element solution of the
problem (3.1).
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