Vol. 2 No. 2 JOURNAL OF COMPUTATIONAL MATHEMATICS - April 1984

B= e ———— —n —— — e e — T el

THE ESTIMATES OF |M-N|]. AND THE
OPTIMALLY SCALED MATRIX*

, Hu Jia—eax - (3A%$#) |
(Institute of Computational Mathematics and Appliod Physicé, Beising, Chinag)}

§ 1. Introduction

It is well-known that, if the elements my of an nxXn matrix M satisfy the
inequality
Imﬁl “g’mﬁl-—}"g}o: 1’=1J 2: ter, T, (1)
o

where J i3 a constant, then the inequality

| | M .<1/8 (2)
holds™#. But sometimes it i8 necessary to estimate the norm | M~N|.., where N is an
nXn or nXm matrix, and the use of the estimate (2), i.e. the estimate | MIN | <<
| M7 o] NV | o | N /3, does not result satisfactorily. In this paper, we give an upper
and a lower bound of |M~'N|.. for some matrices M and N. In [3], James and Riha
applied the scaling transformation to prove the convergence of some iterative schemegs
for solving gystems of linear algebraic equations. In this paper, we define an
“optimally scaled matrix” by means of the soaling transformation. Our estimates of
| M N |~ and the optimally soaled matrix are very useful in the disoussion of the
convergenoe of some iterative matrices. For, in the literature up to now, in order to
prove the convergenoce of an iterative matrix G'(4) of a matrix A, such as Jacobi
iterative matrix, SOR iterative matrix, eto., it is a common procedure to construct a
dominant matrix H (4), such that |G(A4) |<H (A) and, consequently,

p(G(4))<p(H(4)), (3)
where p(+) i8 the speotral radius of the matrix enclosed in the brackets: thus, we need
only to prove the convergenoce of the iterative matrix H(A4). Now for the optimally
scaled matrix 4 of the matrix 4 we have

p(G(4)) =p(G(4)). (4)

Evidently, (4) is better than (38), since from (4) G'(4) is convergent, if and only if
G (4) is so, and this may be obtained cagily by our estimates of | M 'N|.. We will
disouss in this way the convergence of some spliftings of a matrix. Begsides, we will
give some other applications of the estimates of | M1N|.. and the optimally scaled
mairix.

.§ 2. The Estimates of | M ~1N|.. and the Optimally Scaled Matrix

Theorem 1. If M= (my) is an nXn matriz, N = (n,;) is an n X m matriz and

* Recsived October 30, 1982,
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o il

Imu]}§|‘?ﬂu|: o el e, Wy (5)
then we have o, | “ . T
IIleNl]wﬂmiax(? |5 ] / (s "E [m45] ) (6)
whors  MON|eemax S W[,

Proof. First let N=(n;) be an nX1 matrix, that is, an n—dlmensmna.l vector,
and M_i.N £ Thuﬂ MX=N It X= (iﬂj__, g, "* {En)T and

[|M'1NJF===||XJ|W—H1MMI-—l%lj
then o Moot @iy =Tty — anwm, .
Henoe, Imm.[ EAESIMERES ljghlmm |;
and |m:.|=<lm.|/(lma.¢.l—j?hlm;.;l)ﬁmf»x(lmlf(l'mfful—jZ#!mﬁI)).

Thus we have proved (6) when N is an n-dimensional voctor. Now, lot N =(n,) be
an nX m mairix, |N|=(|ny|), D=diagM, B=D—M, M=|D|—|B| and N=|N|.
It ig eagily seen that ! g 57

. !  p(DB)<p(|D|B|)<L
Therefore = (D-B) = (I+D*B+ (DB)?+..)D™,
iﬁ‘1=(|D|—-IBII)"‘i—-(I+IDI‘1!B|_+(--|D\‘1IBI)“+ 3B,
Henco - | M| <M, | M—N | <HN
and | M2V | < | H2H |

(we.also have p(MIN) <p(M~2N), provided that N is a square matrix). Now, if N;
is the veotor ﬂ{}mposed of the elements of the jth column of N, from M0 we have

gy “iﬂf|]“=n:ta.x ?(ﬂ‘lﬁ)ﬁ=m‘ax ?(ﬂ iﬁj)—m‘a.x(ﬂ ?Ej}_ﬁ,){

Taking Z N, ag the n-dimensional vector N and M 28 M mentioned above, we have

proved our theorem. '
In Theorem 1 taking N =I (the unit matrix), we get *hhe estxma,ta (2) Thus (2)
is a special case of (6). |
Theorem 2. Under the conditions of Theorem 1, if, furthermore, M i3 an
L-matriz ang N=0 then

mmZ (M7'N)y, ;-fmm (? lnﬁl /(|‘mu| —Zlmi:D) 13'1111(2 mf/Z‘.mﬁ) (7)

The proof of this theorem is similar to that of Theorem 1 and is therefore omitted,
but it may be noticed that, under the condltmns of Theorem 2, M=M, N=N,
M2=0 and M~IN=0. |

It is well-known that"' if A= (a,;) >0, then

m‘in g ay<<p(A) %m?x 2 Gy (8)
Therefore, we have

Corollary 1. If M= (m,;) id an nXn L-matrix, N=(n;) i3 an nXn nonnega.{
tive matrix and? my>0 (4=1, 2, «++, n), then
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min (5 ny/ 30 my) <p(MN) Smax () ny/ 2 my) . (9)
It is interesting that, under the conditions of the corollary, if > nﬁ/? My i9 a
7

constant independent of ¢, then this constant is just p(M~N). Hence, however wo
change the elements of M and N, p(M~1N) will not change its value, only if 3 n,;/
5

? ™m;; remaing unchanged. Thus, for example,

5 =1 —1770 1 17 [ 10 -8 —17-1f

13 17

—2 10 -2 2 0 2| -2 5 0 0 2 0]

L-1 -1 &) 1 10] | o —4 1o 2 0 2.
- 8 -2 072 0 0"
and -2 10 -3 0 4 0
0 -2 5] oo 2

have the same spectral radius 2/3. Applying this to the special case N =TI, we have
p(M™) =M .=1/8,
provided that M is an L-matrix and 2 my=08(i=1, 2, . n), This, in some way,
7

supplements (2). -

In [B] we obtained some other estimates of |M-2N|w. Now, we explain the
conoept of the optimally scaled matrix. We have

Theorem 8. Lot A= (a,)) be an irreducible n X n matriz, D=diag A, det D+ 0 and
B=D—A. Then there exisis a diagonal mairic Q=diag(g,, ¢, e, Gy) With positive
diagonal elements, such that the matriz A = (@) = AQ satisfies the equality

E!EHI/IEHI =P(|DI_1]BD: t=1, 2, *o, m, | (10)

Furthermore, for A= (ay) = AQ, where @=diag(Gs, Ga, ++, u), §>0 (4=1,2, e, ),
if Q@+ constx Q, then

mfﬂ(glaﬁl/ﬁul)'fiP(fDI*IlBD<miﬂx(§lﬁul/|5u|)- (11)

Proof, This ig a direct consequence of Lemma 2.5 in Chapter 2 of [4] and the
Perron-Frobenius theorem about the nonnegative matrix, Here we give a simple
proof. ,
Our problem is to find a positive vector ¢ = (g1, g3, **+, ¢)7, such that

Elﬂcfl?f/ | @i |gi=% (const.) (12)
and to prove that k= p(|.D| | B{). But from (12), we have
| D[~ B|g="Fq,

Since A i8 irreducible, so is | D|-2|B|. From the Perron-Frobeniug theorem,
p(|D[~*|B|) and the corresponding positive cigenvector may be taken as the & and g
mentioned above respectively. On the other hand, applying Lemma 2.5 in [4] to the
matrix (|D|@)~1(|B|Q), we can eagily prove the rest of the theorem.

According to [8], 4 = AQ is a sealed transformation of 4. We oall A, which
satisfies (10), the optimally soaled matrix of 4. A hag many excellent properties, for
example: |

Corollary 2. One and only one of the following three propositions holds:
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1° as|>Dlia;], =1, 2, ++, n, io. 4 is strictly diagonally dominant.

[E

2°  aw|<Dlay|, i=1, 2, ++o, n. We call such 4 a strictly diagonally inferior

CET

matrix. :
3° |ay| =§{Eﬁf, t=1, 2, -, n. We call such 4 a diagonally equilibrous

matrix.

This corollary follows immediately from Theorem 5. In fact, its three propositions
correspend to o ([D|™2|B|) <1, p(|D|™*|B[)>1 and p(|D|™*|B|) =1 respeectively.
Using the notation of Theorem 3, we have -

Corollary 3. The following propositions are equivalent:

1% p(ID|7B|) <1,

2° p(|D|™|B|)<1, where D=diag 4 and B=D-1,

3° A is a strictly diagonally dominant matrix.

4° A ig an H-matrix.

5° 4 ig an H-matrix.

This corollary is a direct consequenoce of Theorem 7.2 in Chapter 2 of [6] and
the above theorem. Here and in § 8 and § 4, we call 4 an H-matrix, if |.D| —|B| is
an M-matrix defined in [6].

8 3. The Convergence of Some Iterative Matrices

From the theorems and corollaries in § 2, we can easily obfain the theorems for
the convergenoce of a number of iterative matrices, such ag Jacobi, JOR, SOR™ GSOR
(Generalized SOR)'®, AOR (Aocelerated Overrelaxation) ™, SSOR (Symmetric
SOR)", SAOR (Symmetric AOR) and other iterative matrices.

Lemmal. If A=M—N isa splitting of A and A=M—N, a splitting of A,
M—=PMQ and N=PNQ, where P and Q are nonsingular matrices, then, o (M-1N) —
p(M™IN), provided that M is invertible.

This lemma is similar to Theorem 3 in [3]. Its proof is very simple and is thug

omifted.
Definition. The set of equimodular matrices of a matriz A is dofined as

Q(A) ={G=(g): |9y| = |ay], t, j=1, 2, v+, n},
Asg arule, given @, let Dg=diag G and Bg=Dy—@G. Now, we assume that Ey is a

matrix composed of some elements of By and zeros, and that #o=By;— H.. We define
the generalized iterative matrix as

T'1(@) = (De—REg) 7 ((I—-8) Do+ (Q2—R) Eg+QF), (13)

where
R=diag(ry, 12, =, ), &L=diag(w;, ws, =, w,) (14)

Du‘-‘;riﬁmh m;%{], ‘Er=1, 2_, ety M

and Dg— RHq is nongingular. Let T (&) be the maitrix obtained from 7, (&) by
interchanging the matrices Hg and F¢ and replacing R and £ with

B =diag(;:1, Tg, **+, Ty) and §=dia,g($1, Wa, ***, Giy)
regpectively, where
0<ri<Sa, @#0, ¢=1,2, -, n,
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We call the produet T5(G) T3(G@) the symmetrio generzlized iterative matrix. The
iterative matrioss mentioned in the beginning of this paragraph are all special cased
of T1(G) or T (@) T2(G). Now, we can gtate our theorem. -

Theorem 4. The following three proposiitons are equivalent:

1. A s an H-matriz. | '

2. For arbitrary GEQ(A) and wi(i=1, 2, -+, n) in (0, 2/[1+ (| DB,
the generalized iterative matriz T1(G) of G conwerges.

3. For arbditrary GEQ(A) and w and w; (0, 2,-’[1—I—p(|ﬂ|*1]Bl)]); the
symmetric generalized tterative matriz 1’y (@) T (@) converges. |

Proof. First, let A be an H-matTix. From Theorem 8, the optimally goaled
matrix G= (g;) =GQ of GEQ(A) is strictly diagonally dominant, 1.e.

“E“]:}El.&”l: 1’=1: 2: 'f': n, (15)
By Lemma 1, in order to prove the convergence of 7'y (G), we need only %0 prove that
of T(G); T1(@) is obtained from T’ (G") by replacing Dg_; B, and Fg with Dg=DeQ,
Ez=HEgQ and Fg=FgQ respectively. Now, according to Theorem 1, we have
11— |gul+ (mi_Ti)Z]EHI +wi 2 | g4l
jek : je M

- = 16
‘gul—ﬂjezﬂ | 941 W

F ;

. T, (G) %mia.x

where 3| gy | and Zﬁ|§¢,i denoto the sum of all the clements lying on the 4th row of
jer

s
E= and Fg respeotively. Under the conditions of Theorem 4, we obtain at onoce
T (@) | »<1, s0 that T'1(G) converges. 3° follows immediately from

(T3 (@ Ta(@)) =p (T (@ T2(@) <[ To(&) To@) [«
< [To(@) |=T5(@ | -<1.

Thus, from 1° we have proved 2° and 3°.
Conversely, suppose 4 ig not an H-matrix; so neither is G€(4), and the
optimally scaled matrix G = (g:;) =GQ of G satisties the inequalities

|94l QEEG‘L t=1, 2, =, 7, . (17)
Let & be an L-matrix; then so is @. From Lemma 1 and Theorem 2, we have
p(T3(@) —p(T2(@)>min STH@)y
;?-*Iéill {[A—w) |gul+ (fﬂi"?‘i)jé,\;ijl
+m¢§lEifU/HEHl_Tijglgﬁ‘]}; (18)

where we assume r; is so small that | G| —frijz | 9] >0 and 0wy <1. From (17), the
: c B

right-hand side of (18) is not less than 1. Thus T1(@) is not convergent. Un the
other hand, | | |

o (T (GT(G)) =p(Ty (G)T(B)) ?m{in g (T (@)Ts (G
= miin Ej](T:I. (G)) s ]Iiiﬂ ;(Tﬂ (@)) =1,

Pherefore T+ (G)P4(G) is not convergent. Our theorem is thus established.
If G is a five-diagonal mairix:
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RS et

and EG =

then, Ty(6» T2(G) is an alternating direction iterative scheme, which iz much
similar to the alternating direstion difference equation for solving an elliptic partial
differential equation of second order. In [11], another alternating direction scheme
for solving a system of linear algebraic equations is introduced. For this schemse we
oan also apply Theorems 1, 2 and 8 to prove ite convergence. -

Let 4 be an irreducible nxn matrix, D=diag A, det D#0 and B—=D—A.
Similarly, for the matrix H and V', we define Dy=diag H, Dy=diagV , By=Dy— H,
By=Dy—VT and |

Q(4)={G:G=H+V, Dg+Dy=|D|, |Bg|+|By|=|B|},
Moreovef_, we denote | | |
T3 (@) =(R+H) Y (R-V), Ty(G)=(B+V)(E-H),
where A =diag(ry, 72, -+, 7o) and B = diag(sy, 74, '---, rs). Thus, the product
Ts(G)T'4(@) is a generalization of the alternating direction scheme in [11]. We have
Theorem 5. The following three propositions are equivalent:
‘1% A 43 en H~mairiz.

2° For arbitrary GE (4) and r; in [, ), where Ti=max{((Dy)u, (D)),
T'3(G) converges. y
3° For arbitrary GE(A) and r, and 7 in [Ty, o0), where z;=max((Dy),
(Dr)u), the generalized alternating direction iterative matriz Tl (&) T (@) converges.
 Proof. The proof is similar to that of Theorem 4; so we explain it briefly.

If 1° holds, we have @=diag(¢s, ¢a, *-, g?.,), mentioned in Theorem 3, such
that | |

.: "-DHIQ‘?EIBHI?J: 'E’=1.: 2: Tty N,
Henoe ' (H¢;+Vu)q¢>§(l (Br)y| + | (Br)iﬁl)?h =1, 2, “:': .

But T'3(G) is similar fo
Q' T:(G) Q= (RQ+DgQ— Bu@) (RQ—D,Q+ B FQ).
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From
p(T:(@)) =p(Q@'T:() Q) < Q' T:(G)Q| -
'me:x{tlri—Vulqi ;l (Br)ﬂ|?f]/[|‘ri+5u|qi'$l (Br)uigdl,

(ri+Hp) Q= Vu+Hy) 9':’?2!] | (By)ylgs;=0

and ('TF‘VH) ;T—Vu}q,
we can easily prove T3(G) and T:(G)T.(G) to be convergent.
Conversely, if A is not an H-matrix, there exists a Q=diag(qy, ga, *+-, ¢.) with
positive diagonal elements such that
IDHIqi‘ggj‘Bﬁl *q1, 'i’=11 2: wery W,

We ohoose such H and V that

.DH+DF'= IDI, BH;G, .BV,::‘.-"-*D and BH‘I"BF= IB!,
Hence (HH—E—Vﬁ) gig;((BH) ‘.f_l_' (B'F'} i:f) qs, z =1J 2: e, N

; - & - (?’;—Vil)gi+$(BV)‘fq5 -
an - (QTs( Q)”””m}n (q~£+H“)gﬂ—2(BH)quf .

J

HE*I'E, weo take i 80 I&rge that ("Ti -+ HH)QE:}$ (BH);,-Q; and TI}VH (?’=11 21 s ﬂ‘)'
From this the result follows.

§ 4. Other Applications of the Estimates of | M—1N|.
and the Optimally Scaled Matrix

The theorems in § 2 have many applicationg. At least, thery may simplify the
proofs of a lot of theorems. For example,
Theorem 8. If A>0, Q=diag(qy, ¢a, ***, qn), ¢:>0(i=1, 2, v+, n), then

min (jz a9/ q) <p(4d) I (ZJ_J @5/ q4) . (19)
Proof. Since A ig similar to
Q1AQ=0""(ayq,),
(19) follows directly from Corollary 1. | -
It may be seen that, if A i not nonnegative, then we may still obtain (from
Theorem 1) |
p(d) <max (Xiay|i/q:).
Theorem 7. If @G is diagonally dominant and
0 <, 5;{2|gﬂl,f12Ig¢;|, tl, 2, <, m, (20)
then Ty (G) ond T1(Q)Ta(@) defined in § 8 are convergent.
Proof. From T'heorem 1, it follows that
| Lo [gu| + (@i =) 2 [ 94|+ 23 [ s
. jc & JEF .
Gl =7 20 | 9]
JelH

Under the conditions of our theorem, we can easily prove that the right—hand side of
(21) is less than 1. Similarly, we have [T3(®@) |=<<1. Hence

(21)

IT1(@) |-<max
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7@ TS <1,
This theorem ig a generalization of Theorem 2 in [8]. It should be noticed that
2|gﬁl,/?fgﬁ\ in (20) may be greater than or less than 2/(1+p(|Ds| 1| Bs|)) in

Theorem 6. But if & is an optimally scaled matrix,
2'yu|/;|§ﬁ| =2/A+p(|Da| | Bg)), i=1, 2, -

This is why we can deduce Theorem 6 by means of the optimally scaled matrix.
Obviously, not only the convergence but also the rate of convergence can be
disoussed from Theorems 1 and 2 of § 2. Perhaps, the resnlts obtained in this manner
are better than those obtained from (2). If we first use Theorem 3 and then use
Theorem 1 or Theorem 2, we can obtain even better results. For example,
Theorem 8. If G is an H-matriz, and 0<e;<2/(1+p(|Dg| | Bg|)), then

P(Ti(G))‘%’m‘ﬂX( |1—ax| +eip(|De| ™| Bgl)) <1.

Proof. Under the conditions of our theorem, we have at once
p(T1(@)) =p(T1(@)) < |T:1(G) ]
’Egm?*x{[ll"‘mil | gu| + (mi_‘?'i)jEEE | g4

y P +M¢%|§£5|]/[|§ii|—'Ti%';tﬂ]}
Qm?’x{[|1—mi| +awp(|Dg| ™| Bel)

—r gﬂlﬁ;;lﬂﬁﬁl]/ [ = %I.&”Wlﬁull}
'QHIELE(II—{&,‘ +W£P(|DG,_IIBGI))<1.

Besides the results in § 8 and § 4, we have also proved theorems abont M—matrix
and other problems by the theorems and corollaries in § 2. This indicates that the
estimates 6f |M N |. and the optimally scaled matrix are indeed good tools for
disonssing some problems.
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