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A FAMILY OF STIFFLY STABLE LINEAR
MULTISTEP METHODS FOR STIFF AND
HIGHLY OSCILLATORY ORDINARY
DIFFERENTIAL EQUATIONS’

L WanG-vAo(# 8L })
(Computing Center, Academia Sinica)

Abpstract

This paper suggests a family of stiffly stable linear k-step methods with order %, for arbitrary
L. Their stability regions are larger than those of the Gear methodl. Preliminary numerical test
shows that these methods are efficient for stiff systems of ordinary differential equations with char-
acteristic values near the imaginary axis.

1. Introduction

In [2] the author has oconstructed three families of linear k-step methods,
depending on parameter >0, with good stability. The three families of methods are:

1) asymptotieally A-stable® implicit linear k-step methods with order &-+1,
which have the generating polynomials™

pu(§) = (€ —1) —1+e)* ™,
0 (E) =001 (E—1) + -+ (E—~1)* 2 +a (E -1 (1

where ¢, are determined by the relationship P]if) = 6o+-0i(E — 1)+ oo+ (E—1) -,
and o are the following e;(¢=1, --+, k). :

2) stiffly stable, asymptotically A-stable implioit linear 4-step msthods with
order %, which have the generating polynomials

0u(6) = (E—1) (E—1+8)", 1
o (£) =¢o+eci(E—1) +"'+3k—1(§‘1)k"1+23(f_1)k; g{i?‘:’:m- (2)

This family of methods involves two parameters & and p; when p is chosen in

(%J m), the subfamily of methods is stifly stable and agymptotically stable as e—>0.

3)" asymptotically A-stable explicit linear k-step methods with order #—1, which
have the generating polynomials

* Received February 15, 1982,
1) A family of methods {3 ()} depending on parameter g0 is called asymptotically A-stable if for any

B>0, 0<a< %, we can find 2,0, such that when e<lgp, M(g) i3 stable in the region 2, r, Where

Qg r={u€C||u|<E, |arg(—u)|<aj.
2) An agymptotically A-stable family of explicit linear k-step methods with order k—1 has already been
constructed in [4]; however, the family of methods mentioned here is different from that one.
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e (£) = (€ —1) ({ —1+2)"7,

0.(§) =co+e1(§—1) + - cr-2(€ — 1)1‘_2‘{'?(5 ~-1)*3, pE R (3)
when p —»0and %—)OJ thig family of methods is asymptotically A-stable.

It is shown in [2] that the implicit linear %—step methods of order 4 with the
generating polynomials

p (&) =(E-1) (E—1+e)*,
Gol(E) =Cotey(E—1) + - o5 [E= 1T e (£ ~1), (4)
where ﬂ'; =01 ﬂg,;_s"!‘ ove - (—“ 1:) E_iﬂn
are also stiffly stable and asymptotically A-stable.
Because all these families of methods are asymptotically A-stable, we can expect
t0 find linear multistep methods with good stability properties from any of them.
In this paper a family of stiffly stable linear multistep methods with orders ons
to gix is obtained from (4), whose stability regions are larger than those of Gear
method.

2. A Family of Stiffly Stable Linear Multistep Methods
with Orders One to Six

If we choose (4) as generating polynomials, it is very simple to write down the
implicit linear k-step methods with orders one to six. From now on, we denofe these
linear multistep methods with order ¥ (k=1, 2, ---, 6) depending on & by M;(e) and
Gear method with order ¥ by G for short.

Now we list these formulas and major parameters of their stability regions in the
following Tables 1-—4, (In the same tables we also list corresponding paramaters of
Gear formulas for comparison, and the meaning of the parameters D and a characteri-
zing the gtiff stability are shown by Fig. 1.) These tables show that their stability
regions are much larger than those of Gear method.

% k
It is convenient to desoribe a linear k-step method 3 o Yai=4 2 Bi fa+s by its
b 0

generating polynomials p (£) =& +ap_1 &+ +op and o (§) =B+ Bp-a £+
+ Bo. Therefors we only write down p(¢) and o (¢) for corresponding linear multistep
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method in the following.
Methods Mq(s):

pel(E) =£7— (2—8)§+(1—8),
WOAAT N
ﬂ',(f)—(l 2)§ ( 2 )§-
Similar to the Gy, the methods M3(s) are also A-stable when ¢< 0.7 by numerical
ocomputation, see Fig. 2.

Methods M3(e):
Ps(£) =§3—-(3-—25)§2+(3—4a+s’)§—(1—-3)”
u's(f)=(1 £ 152 sﬂ)fﬂ (2 4s+3 )fﬂ—l-(l 3¢ +%E)§
| Table 1
Gs | M500.7) | M:00.6) | 2:00.5) | 25(0.4) | M5(0.8) | Ms(0.2) | M4(0.1) | Ms(0.04)| M5(0.01)
D 0.1 | 0.0735 | 0.0208 | 0.015 | 0.0076 | 0.0036 | 0.0018 | 0.24°3 | 0.47% | ~0
o ~80° ~87.3° | ~88.23°| ~88.68° | ~80,07°( ~89.20°| ~88.6° | ~89.85° | ~E89.91°| ~00°

Methods M.g, (E) :

ps(§)=§"'—(4—35)53-%3(2—35-[—65)5“—(4—95—[—639-—63)54—(1—5)3,
(1.8 b 3 B 3\ _ 15 21 o 3
0®) =(1-5 e+ S -2 o) g~ (8-3F e+ T *- TLe%)¢
21 .39 a2 99 ﬂ(_ﬂ 2_35_55
(32+43 )f S i )5
Tahle 2
Gy | M;(0.5) M4(0.4) M4(0.3) M4(0.2) Mi(0.1) M(0.04) M (0.01)
D 0.7 0.103 0.0465 0.0213 0.00807 0.0017 0.19-3 A
a ~7 30 ~85.85° | ~86.9° | ~87.78° | ~88.6° | ~89.23° | ~89.82° ~90°
WL B | Rkl W S e T Wi R Wi A PN LS - SRS
Methods M5(s):
0, (§) =&°— (5—48)£*+2(5—88+86M£E2—2(b—~128+98* —26%) &7

+ (5—168+188?—8e3+-8*) & — (1 —8)4,
5 g2 8 3, 261 Ngs (4 g __ 29 s, 637
o (&) = (1 23+2 5 & 55 s)§ (4 128+ 13e 5 5% 360 )f
 OAa a__ s, 109 Nes (4 2 __ a, 1887 ,\ »3
+(6 246 +306"— 168% + s)g, (4 208 + 3187~ 196+ 3)§

Table 3
2.4 0.283 0.001 0.009 0.216-2 i 0.83°8 ~i(}
~B83° ~79.58° ~84.12° ~86° ~38,08° ~80 .4° ~90°

M
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Methods Mg(8):
0. (&) =£8— (B—53)£5+B(8—Bs+2e?) ¢t —10(2— 55+ 4e?— %) £°
+5(8—10s+ 1282 —6g3+4-5*) £2
— (6 —258+408? — 3082 +10s* — ) £+ (1 — &) 5,

0 (£) =(1-—£ 3_1_&5_ gd— 45 g3 251 ot 1425 55) £o

2 6 12 144 4320
(w35 1B o 275 ., 1525 8631 ﬁ)
(5 5 8T & T3 ¢ T4z ¢ T30’
. 216 5 38Bh 5, 194H ¢ 3649 5)
+(10 45¢ - 5 g 5 58 = =30 3
(10_rr.. 308 o 175 o 2695 , 4991 5)
(10 55 ) 3 & 2 87 1 72 720 &
_ 65 | 425 4 845 , 4675 2641 .\ »4
+(5 5 T ° T 13 ° TTim 480 5)5
/15 115 o 275 ,, 1901 , 4277 5)
(1 T &1 = & 15 "1 144 & 1440 € f-
Table 4
Gg Ma(0.4) | Me(0.8) | Mg(0.2) | Me(0.1) | Me(0.04) | Me(0.01) | Mg(0.001)
D 6.1 0.863 0.116 0.041 0.89-2 0.133-2 0.52-% 0.4-8
a ~2T" ~82.16° | ~84.29° | ~86° ~88.00° | ~89.21° | ~89.04° | ~89.28°

3. Discussion

The stability region of a linear k-step method (p(€), o(£)) only tells us that, if
M falls into if, then all the roots £,(AR) (=1, ---, k) of the characteristic equation

p(&) =M (£) (8)

fall into the unit cirele, and the errors of the method is decreasing. Otherwise the
method is divergent. For chosen stepsize s and any characteristic root A; of the linear
system, we generally do not know the distribution of the roots &, (Ah) (=1, «--, k) of
the characteristic equation corresponding fo such a Ak in the unit cirele. Obviously
the closer £, (M%) come to Zero the faster the errors decrease. Conversely the closer
the roots come to 1 the slower the errors decrease. Therefore it is ingufficient to
compare strictly two methods merely by their stable regions. However, the information
about the distribdtion of roots of the generating polynomials p{€) =0, (&) =0 seems
significant for comparison. It may be used as a orude measuare.

We give the reason as follows.

As A0, (B) becomes p(¢) =0, and as Ah—>o0, (B) becomes o (§) =0. Owing to
continuity, all the roots of (5) are near to the roots of the equation p(§)=0 when
Ah~0, and near to the roots of ¢ (£) =0 when A ~cc.

For obtaining certain precision in calculation. we always choose at the start Ah<C1.
' Therefore the method hag better behavior if, exoept for the major root § =1, the other
roots of p(€) =0 in modulus are smaller. Adams formulas are advantageous in this
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respect.
In solving stiff equations, we always inorease the stepsize successively as soon as

the transient process caused by the largest (in modulus) characteristic values passes
over. Then it may happen that |A|mah:>1, and the roots of (5) tend to the roots of
o (£) =0. Similarly, the method has better behavior if the roots of o (£) =0 in modulus
are smaller. Gear formulas are advantageous in this respect.

Now we illustrate these by an example. We intergrate the differential equation

(6) using the linear multistep formula.
Y1 = A,
oz = Aa¥fs, (6)
Y= Ae¥s,
where ReA,<<0 and |A:1]>> 1ha] > | As].
First, wo should begin with stepsize Ay satisfying h:|Ai[ <1 (thus, hyldg| K1,
hi|2g| <1). Then the error propagation is influenced mainly by the distribution of

the roots of p(£) =0.

When ¢*¢~0, we should increase stepsize to ks, such that hs|As] <1 (thus, halha!
«1, but it may happen that hs|A1{>>1). Then both the distributions of the roots of
p(€) =0, o(£) =0 influence the error propagation.

Moreover when e*~0, we should again choose stepsizo hs, such that hg |Aa| <1
(thus %3|A1]>>1). Then all the distributions of the roots of p(£) =0, o(£) =0 and
p(&) =Aghao (€) influence the error propagation.

Therefore, the distributions of the roots of the p(£) =0 and o(§) =0 should be
considered if we want to compare Gear method with methods M (s).

The distribution of roots of p(£) =0 and o(£) =0 corresponding to Gs, G and
methods Ma(s), Ms(e) are listed in the following tables.

Table 5
Ga M5(0.7) M5(0.8)
roots of o(£) 1, %. 1, 0.8 1, 0.2
roots of o (&) 0, 0 0, —0.077 0, —0.333 )

- Table 6
(s M2(0.6) M3(0.7)
roots of p(£) " 1, 0.318-+0.284i 1, 0.4, 0.4 1, 0.8, 0.3
roots of o (&) 0,0, 0 ' —0.88, 0.526, 0 —0,728, 0.438, 0

M

It seems that Gear method is not notably superior to the methods M (e) with
respect to the distributions of roots of p(£) =0 and ¢ (£) =0 for the examples men-

tioned above.

4, Numerical Tests

The well-known model stiff system of linear ordinary differential equations (A)
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D,

is solved using both Gear method of order 4 and the methods M (&) with the same
order (=0.6, 0.5, 0.4, 0.3, 0.2). We choose A=0.01, the start point t,=1 (g0 the
early transients have past over) and the end point #;~=10. The parameter « in (A) is
taken to be 25, 100, 200, 300 and 700 respeotively. The computational results in Tables

7-11 show that:

1) When =25, Gear method can proceed smoothly, and so does the method
M (e). The preoision of both methods is almost the same. (see Table 7)

Table 7
a=25 Tt
Loy exact solution (g 14(0.6) M4(0.5)
1 0 —0.8758041831-%8 0.4613560662-33 0.5676106023 38
Y 0 —0.9884920319-38 0.8746888796-% 0
Ys 0.4248354378-17 0.4248270560-17 0.4248190658-17 0,4247986542 11
4 0.45393930094 0.4539992863-¢ 0.4530992783-4 | 0,45396902320-4
U5 0.6737947023% 0.6737946563- 0.6737946990-2 0.6737946675°2
Ye 0. 36787944140 0.36787943850 0. 36757846890 0.36787942150
— S e ——— L —— e —— |
a=20
ety M-i(o-'i) Mea(ﬂ-g) Mé{{].z}
i1 —0.5244.591067 37 —{, 800850060038 0.7171080749-3
Ya —{0.2346312179—37 —0.2198759832—% (.7428037992-3%0
Us 0.4247136262717 0.4246931080-17 0.4223131740-17
U4 0,45300914634 0.4539989904 4 0,4539978429-4
Ys 0.6737946203-2 (.6737947841-2 (.6737048122-2
U 0.36787953896° 0.36787948569 0,3678795296°

e R R R EEEEE—————

2) When =100, Gear method becomes unstable, but the methods M (&) still
succeed with high preoision. (see Table 8)

Tahle 8

— e

=100
tt'ﬁf

Yi
Ya
Ya
Yy
Us
Yo

exact solution

(G4

AM4(0.6)

M4(0,5)

0

0 .
0.424835437817
0.45399533009-4
0.67379470232
036787944140

0.41444505209
0.991694971110
0.4248270560~17
0.4535992863—4
0.6737946063 %
0.36787943850

a=100
t=ty

My(0.4)

—(,4258798575°8
0.1556228363-8
0.424819065817
0.45399927834
0.6737946990-2
0.36787943599

0.6521020263-%
0.464247641479
0.4247936642-17
0.4539992320—4
0.6737946675-2
0.3675734215°

M4(0.3)

M4(0,3)

1
Y2
Ya
Y4
Ys
Y8

i v e T i Oy,

0,1314629451-16
0.7330294851-17
0.4247136262717
0.45399914634
0.67379462032
0.36787538980

E

—0,1201952788-3

—(,6112930319-34
0,4243931980117
(0.4539089904~4
0.6737947841-2
0.36787948560°

—0,2146341723~%

—0.3087916265 %
0.4228131740-17
0.4559978429-4
0.6737948122-14
0.36787952969
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3) When a=200 and 300, both Gear method and the method M (0.6) loss
stability, but the methods M (&) (8=0.5, 0.4, 0.3, 0.2} still succeed with high
precision. (see Table 9 and 10)

Table 9
——-—-——-———F__—_—-___-———_—-_——-__—___
e ng exact solution Gy M4(0.6) | M0.5)
11 0 —(,3949833340% 0.2767585889-11
Y 0 W, Y2 0.42628402502 0.5785548813-11
Ya 0.4248354378-17 0.4248190658-17 0.4247926542-17
Ys 0.4539993009—4 overflow 0.4539992783 4 0.45399923204
Yo 0.6737947023~2 0.6737946990~ 0,673794667572
|
Ye 0.36787944140 0.36787946890 0.36787942159
g ———————————__—
ﬂ;’:ﬁfﬂ My(0.4) M4(0.8) Y4(0.2)
v 0.7393149667 98 0.5812502772-98 —0.1143503665-31
Ya 0.2472637221-%8 —0.7119410453-38 0.1589647785- 3
Ys 0.4247136262-11 0.424393198017 0,4228131740-17
¥4 0.45399914634 0,4539989904-% 0.4539978429-4
1 0.673794620372 0.67379478413 0.6737948122-2
Y6 0.36787938960 0.36787948580 i 0.3678785206°

M

Table 10
M
“;:ff“ exact solution Gy M4(0.6) M4(0.5)
o | 0 —0.70916519822 0
" 0 ", ¥s 0. 20004007912 0
” 0.4248354378-17 0.4248100658-17 | 0.42479836542-17
” 04539993009 0.4530992783-¢ | 0.4539992320-8
v | 0.6737947023- overflow 0.8787946930-2 | 0.6787946675-2
v 0. 36787944140 0.3678794689% | 0.36787942150
";:?fﬂ M40.4) 34(0.3) M4(0.2)
- —
” 0 0.9962676100-%8 —0.18176686065
" 0 0542255409438 —0.8716860559-%
ys 0424713626217 0.4243931980-17 0.4923151740-17
Ye 0. 4539991463 -4 , 0. 45300300044 045300784294
ys 0. 67379462039 067579478413 0.6737948122-2
” 0.36787938960 0. 36787943560 0.86787952969

__—_——_____—-———————-—___—.-_—

4) When a="700, using the method M (0.2) we also successfully obtain high
precision solution. (see Table 11)
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a.-?Oﬁ, t—#:f

i

oxact solution

AM;(0.2)

Table 11
 ew0my, | W ] & ] .
0 ) il _0 T 0.4248354378_".17 B
-—i.'?r.111868&-‘!592-ET ;;2299252697“35 - 0.4223131;40—1? -
Ys 2 Ye

ﬂi==700, ﬁﬂti{f

exact solution

My(0.2)

0.4539993009-2

0.6737947023-2

0.36787944140

0.4589078429-4

0.673794R122-2

TR

0.36787952969

_-.__-—_-__-_-—_——_____—__—____

5) Among the methods M (g), the preoision is higher for larger s.

Model systems:

Charaocteristic values of the coefficient matrix of (A):
e, —4, —1, —0.5, —0.1,

[1]

— 101
Exact solution of (A),

y{l T lﬂyl +ayﬂ:
Y2 = — oy — 10ys,

Ys = — 4y,
Yy = — Yy,
Y5 = —0.5ys,
Yo=—0.1y,,

%:(0) =1 (=1, -, 6),

Y1=¢""% (008 af +sin at),
s =e"1% (cos at —8in at),

— a—4f
yﬂ =2 >
Y
94 S -
Pt ""G-ﬁ
gﬁ s - t:

Y = =01
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