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IMPLICIT DIFFERENCE SCHEMES FOR
THE GENERALIZED NON -LINEAR
SCHRODINGER SYSTEM*
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(Computing Center, Academia Sinica)

Abstract

In this papsr we prove under certain weak conditions that two classes of implicit difference schemes
for the generalized non-linear Schridinger system are convergent and that an iteration method for the
corresponding non-linear difference eguations is convergent. Therefore, quite a complete theorstical
foundation of implicit schemes for the generalized non-linear Schridinger system is established in this

paper.

Convergence of Difference Schemes

We discuss the following initial-boundary-value problem for the generalized
non-linear Schrodinger system:
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Here U, B are complex vectors; A(z), F(x, t) real symmefrical matrices; 8(z),
g{|U|? real scalar funections (|U| denotes the Euclidean vector norm of U); and
G{(z,?) is a real vector. As for ¢(|U7|2), we consider the following functions: |U|*(and
|U |#*, p being a positive integer), »(1—e "), [U|*/A+|U|*), n(1+|U|?), eto.
This problem can be solved by using the following schems
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Here V7% denotes the approximate value of U at o= jdr, {=ndi; F? = F(jd:v,
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positive constani. Clearly, the truncation error is O(4t*+ 42°) for a; = %-, and O (4t 4
dz%) otherwise. Chang' has discussed convergence of this scheme for a;=1.
However, one meets congiderable difficulties when trying to prove the convergence of
this scheme for ay+#1 by using the method in [1]. If a3 %0, one has 10 solve a system
of non-linear equations ab each step. An iteration method for solving the system ig
usually needed, and the iteration is required to be convergent. For the scheme with
0;=0, only a system of linear equations needs to be solved, so this scheme is also

special. Therefore, we pay our attention to the three schemes with n:l——]-'— 1, 0, which

2 2
are called Scheme A, Scheme B and Scheme C regpectively in the following.
We first discuss the stability of Scheme A. Clearly, there are .the following
relations:

2 ST, PV + Py =73, P+ )]
——Z (V22— V3
=1
J—1
5 2 [y VD e+ (Aug Vide, VR4V
—1 (AHJ*E- Vidhz + (Al Vida, Vit V]

J—1
=5 3 [ Vi + 4y Vi, ViPHVR)
; (g P+ Ay T, P TRN]=0

()

g1

> [? Bilg({ V5D +a(|V3ID) LV VS, VLT

=]

— TT, V5Tl + (5 ES IV, Vit AT

*(é +§(Fn+1+]7) 7% +1_|_T;?}1)]._—..

e ’H'% n+1 7 "+'é' T7n+1 T7n
E [R &y 2, ViV~ E *, ¥+ER]
J—1

=2 3 (G, Im (V] +VD).

L

Therefore, subfracting the inner product of V3*14+FV7 and the mnjugate equation of

(2) from that of '+ V7 and (2), and summing up these differences from j=1 to
J—1, we obtain
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Let |\ = dx 2 V3|2, | 677 = d= 2 |G |2, Then it follows from the above relation
and the Schwa.rz mequahty that

. bl
prafi— (L prape L e @),

which can be réwri_tten as
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If max|G"'2|*<g, it follows therefore from (4) that
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which meansg that the scheme is stable.

We come to the discussion of convergence. The truncation error of this saheme ig
O(4t?) —I—O(Aa:’) so the exact solution satisfies the relation
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Thus the error s;=Uj~— V7% satisfies the equation
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For g certain formulas similar to (3) still hold. Subtracting the inner product of &j*
-+-¢§ and the conjugate equation of (6) from that of &}*'+s? and (6), and summing
up thege differences from j=1 t0o J —1, we obtain
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When ¢(|U|*) = |U|% x(Q1—e@"), U2/ A+ |U|Hor In(1+ |TU|?, lq¢’| is bounded
for any |U|?, Suppose [¢'| i3 bounded by @, In this case we have the relation
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lg(|U3|D —gq(|V31D) | = ¢ & (T2 = V513 |
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where &= |U324+8(]V32— |UG|®), 0<O<1,
Therefore, if max{|U3*|, |U3|}<W and |B;|<B, we get
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Bocauso | 672 [ <3 ([e}*1 |14 [s72]9), [6"2]?]a}] < (]ef*|*+ 83| eto., it follows
from (7) and (8) that
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where % and ¢ are two positive constants. Obviously, we can further obfain from the
above

e 2]2— | g" |2 ([ ] *+ — -

Az Ax
Moving all terms on | s™*?| to the left hand side and all terms on [s"| to the right
band side, and denoting (1—kdt k‘dt || )” s*|® by 4", we have

——l&"|* +[&™* +—=[&""*|*) +edi (4t +42%),  (9)
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When | s"|?=0(4) and 4¢ is sufficiently small, (10) can be rewritten as

Y (1 adt) oy + o dt (A4 + Ar*), (11)

where « i8 a positive constant.
Before going to further proof, we make two notes. The first is that when (U] is

bounded there exists a constant g, independent of 44 and dz, such that
| 8" 2 <ea. (12)
Because (U |? is bounded and
| e 2 (7 -+ U A<2 (V2 + (U9,

(12) follows immedja.teli-;r from (),

The second is that if ¢>>0, $>0, ¢>>0 and
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when —aa?4-bx —e<<0, | .

It ig eagy fo prove this conclusion. Because of ®—4ae>0, the equation —a2®+ba
—o¢="0 hag two real roots. Suppose the two roots are @; and z,, and #;<<ws. Noticing
—a< 0, we see that if and enly if z<a, or 2>, the inequality —as?+bzr—e<0
holds. Moreover,
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Therefore '(18) or (14) must hold. |
From what we have proved, we obtain the following conclusion. If Jf =

1
O(42%""), >0 and At Az are go small that —-1-—-::’.1 il B i Y tiles (4tt +

2 A3
dz*) and | 8| *<<dos (4t*+ 4a*), then|e™*|[2<Cde; (4t + do*) must hold.

In fact, if y“+1=(1-—kdt !ilf s“+1|5) | e™* |2 <Les(di*+ da*), wo have from (13)
and (14)
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Therefore, we only need to prove that the second inequality cannot hold. To do so,

we introduce another inequality. Because |g}*|®<S % ( ,-ilm];‘ | 8| A4 dwt/?| s}‘“]"‘) etc,

we can obtain fron; (.7') and (8) the following inequality similar to (9)

o2 arl <R[ *]* + o |1 + g e[+ [ ¥

L

; A;uﬂ | gt 'dmjim |‘s“+1\|4)+6ﬁt(dié+dm*),

i. e.,
* kAt kAt %
(1—kdt— Lo — o 16™2 )| e P oo (4t + o), an
where ¢g is a constani a little greater than 4e;. Therefore |&**1]? must satisfy
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We have supposed ,«_'lt=0(da:2+a), 8>0, so gia:z_’lt 40¢ (24 Az*) > 04 if 4t and dz is

sufficiently small. This meang that (19) can be rewritten as
|87 *>04 (20)

when 4f and 4z is sufficiently small. |
Therefore | s"**|? must satisfy (15) or (16), (18) or (20), and (12), This means
that the only possibility is that | s"**||? satisfies (15).
" We can now complete our proof by induction. Owing to | 8%?=0, it follows from
(11) and the above results that

< (L +edt)r—1) -Z-(Ai*—l—dm“}{% T (At 4 Ja*)
| et 2<4 .E T (At + do*), T>4t,

Suppose for i=1, 2,
S (L 4-adt) P —1 )..E. (dt* + da*) <-E T (di* + da*), (21)

L&) <4 -z- T (M4 dr®) . . \ - (22)

We now prove that (21) and (22) hold also for I=n+1 if (n+1)A4<T, If (21) and

(22) hold for I=1, 2, ---, n, we obiain from (11) -
I (1 4+ adt) y+edi (At + da*)

< [(1+adi)™ — (1 +adt) + odi] % (t* 4 da*)

= ((1+adt)*t —1) % (At 4 da*) a:.z_ eoT (At + Az?)

Thus (21) holds for I=n-+1. Moreover, we have proved that if (21) holds for
I=n+1 and (22) holds for I=n, then (32) holds for I=n+1, Consequently, (22)
and (21) must hold for all (n-l- 1) dt{T (22) shcws that

et <a( < o) At”~/1' 12" 30 as 4650,

1
Therefore we have the following conclusion: if |¢’| is bounded and 4f = O(ds?™),
o0>0, then the approximate solution converges o the exaol solution of the partial

4
differential equa.tmns with a convergence rate of O Vit \/ 1 ’jﬁ )
When o % , one can prove by the above methﬂd that the approximate solution

'converges to the exact solution if Af— lf)(d:'.tf*’ﬂhai ), >0 However, the rate of conver-
gence is O (dt~/ 1+ 4%/ 4t* ) because the truncation error is O (4t+4d2®), When a; =0,
g (|V*1]?)  disappears in the equations. Consequently, the convergence can be

1
proved by a simpler method under the weaker condition of 4= O(daﬁ“), 3=0,

In order to solve system (1), the following two-step difference scheme can also ..
be used. In the first step, the system (1) is approximated by
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In the second step, it is a,pproximated by

. Vn+1___ ﬂ- 4
rd 4 ((-A!+é- V?m )E+(-A-j+ V?r)#)

Vi
+%Bsq(lV}‘+“‘l’) V7
| 3 (24)
. +§F}’+“‘(V}‘+1+V?)-—-—G}'+“‘, F=1 2 e J—1,

1
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where a;>>0, Obviously, the truncation error of this scheme is O(4*+ do®)if n:1=%'.

The advantage of this scheme is that in order for the truncation error to be O(4i®+
427, only two systems of linear algebraic equations need to be solved. In what

follows, we call the scheme with o == —é— Scheme D

Assume |¢’| to be bounded again. For Schems D we have the following result: it
4 |
i8 convergent and its rate of convergence is O( Ai? \/ 14 j‘; ) when 4 =0(dz* X ),
0=0,

1t iz clear that among 8%, e f“f and g}*!, the relations

1

"+§' 2 ”
B S (] s,: 2+ (Assg e)a) +ELq(|T51% —g(IV31D)
(T + U+ B g (75 (&% + o) +-§- ALTCAETH
= 05 (4t) +0;5(4a”)
and
n+l .= n 1
ol At i ;. ((A” 2 )a+ (AHI 5:w)1)+ (9(' U1+y 1) —g ([ ¥, 2 1))
(U UD + B g (VI ) (a4 o))+ F]F (e} 46
"+ 3 g a
hold,

Moreover, we can obtain the following relations similar to (7) using the method
above,
2 $ "ty g n S B 9 3 a w NEE n
& S U= [0+ BB @ (U3 ~g (V3D Im@E +T3, &% +6)
J-1
~ 2 Im(07(4t) + O"(Am’) S ) (25)

and
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k and ¢ being constants, it follows from (25) thab
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Gonsequently, if [|8"]|*=0(4dx) and 4¢ is small enough, we have

1 1 :
| 8™ 7 |2<< 8.5 &+ 26% (it + At 4a*) C1h
Similarly, because of the following inequalities

2 b @(U™E |9 —¢ (V5 E D) Im(UI +U3, e +e])
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j=1
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and | 35; Im (O (46) + O7F% (&), &'+ &})

< 121 [o2 (dtt+ dz*) + &7+ [*+ |87 (7],

where & and ¢ are constants, it follows from (26) that
e+ [P G 1) 2 |2+ o P2k [0 [P+ (6™ [ )+ o2 (et 4 ),

i. o.,
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S0 =

P (}ii—l)ﬁlt [+ (B+1) 48 | o2
(1+—[| % [*) (b+1) 2] & "E oot + dof) |, (28)

Moreover, it follows from (27) that HE“"'E |2=0(d4z) when

- 1
|&]*=0(d), 46=0(4*™"), 320, (29)
Therefore, from (28) and(27) we can asgert that there exist two constants & and ¢ such
that ‘

| 8"t |3 (1 +adt) | 8|2 +cdt (84 + dx*), (80)
From (30) we can prove the relation |

|2 ((1 —I—m:ﬁ)"“-l)%(dt* Ax*) g% T (At4+ Azt , (n+1) AT, (81)

1te

In fact, if #4=0(dz* "), =0, and (81) holds, then the relation | &"**|*=0(dz)holds.
Consequently, it is easy to derive (31) from (80) by induction.
We have therefore proved that Scheme D is convergent and its rate of convergenoce

].SO Atﬂ‘/l ].HLE

For the case a4 %

L the convergence of scheme (23)— (24) can be proved by the
—+d

same method. However, the convergence ﬂnndltmn for al%% is A4=0 (dz® ), &=0,
and the rate of convergence is O At ~/ iy e )

Remark. If ¢(|T|?) = [Ulﬂ", p being an integer greater than 1, these resulis on
Schemes ¢ and D can still be proved by a similar method. However, the proof will
become more tedious. Because the space here is limited, we omit the details. For
Schemes A and B, the convergence can algo be proved by the method in this paper if
the condition is strengthened. For example, if ¢(|U|?) = |U|*, then the convergence
can be proved by the method here under the condition 4t=—0(dx®*%), 6>0, It is likely
that this kind of result can be improved, but o do so, a new method probably has to
be found.

Convergence of Iteration

When implicit schemes are used, a system of equafions hag to be solved in each
step. For Schemes A and B, it is a non-linear system, so an iteration method is
needed for its solution. In what follows, taking Scheme A as an example, we disouss
some problems on iteration methods. The case where U is a scalar is first considered.
We assume g>> | A(2) |, and for the moment, we also suppose the sign of A(w) does
not change.

Obviously, Scheme A can be rewritten as

{meJf1+bJVf+GJVJ+1=dJ+B!(F!): j=1: 2: G J_']':
Vo=V ,;=0, '

Here V; stands for V4*, and

(32)
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L My . AE(Aa+ A1) B; aimy g 1 il
@y = AT by=10— 2 A2 +45(TQ(|V1|)+ ng ):
ﬁt.A._f.]..l'
I‘loj= Zdw—ii, ='Z-Vj‘—-— (A.{_F%ij)ﬂ | (33)
- (L g+ L B+ 67,

L%(Vf) = — At - Bj g(|V|® VD).

This system can be solved by the following iteration method:
{E'fV 1+bJV EJ+G§IV§+1”dJ+6 (V(I—-IJ), J=1: 21 s 'I_lj
V=V y =0, zg=1,6 32, ..,

where we assume V{¥=VF7 From (84) we can easily obtain the following equations
fur E(’) . V{B) - V(S—].J‘ :

 (34)

{m,sfr 21+ bys; D080 = (V) —e, Vi), j=1,2 -, J-1, (35)
g =g =0, =2 3 .-
For convenience, we express the gsystem in a matrix form
g @ — B—:LE(:-H’ g=2, 3, o, (36)
where
by o1 er’ el (V§) —e(VE2)
B ads D - 04 e s%‘j 760 _
_ @y—1 bs-1 854 er-1 (VL) —erz (V”‘m
In the following we nse the L.. norm. It is easy to prove that if mim{| by| — |
— |e;|} >0, then B! exisls and
i 1
B < T = Talr -

Olearly, for any two given positive numbers X and 4w, we can find a positive
number 4¢ such that

o2 A o H+ (HA)<1, (38)

If (88) holds, from a> |41 |, §=0, 1, -+, J—1, it follows that

4 V)
«/1 ( ﬁ (Aﬂf"‘ﬁf—f)) 517 | 451 + Ap 1 |

r

At
}J(ﬂﬂ)ﬂ -2 H Ay + Ay (i (g + 4p))

4
& |4y + Ay | >HE,

Therefore we have
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2
18] = |ar| = lo)| >4/ 14+ (ols (Airg + 4123)) =g | sy + Asg |

- 4| B q(I7319 +4 B | > (E-D 4

g-max{|-BL g(7y1n+ L 777 ],
and assume that the sign of A(#) does not change, which implies [4;,1 |+]|A4 .1 |=

Here we assume

| 4;+1 + 4,1 |, Thatis, if 4 satisfies (38) and H satisfies
H-§>0, (39)
then B! exists and
: 1
Bl < = 40
B < _ (10)

We now turn to estimate the norm of £ Because of
e (Vi) —es (V™) | <—— Edt gV PIH T +VE)
=g (|FF= ¥+ V?) |
L T2 +ig )

D] 4 (7)) |ef2l,
where &1 = lV}'“” |5 a( |V§’"2) [9— IV}:‘“‘”]E), 0<#<1, if there exists a constant ¢,
independent of s, such that

'VF_I) | {El: IVEE_EJ l {:Eir .?=11 2: G J _'1: (4-])
then there exigts a constant ¢; dependent on ¢; but independent of s, such that
| e~ <cadt] s« (42)

Consequently, when (388), (39) and (41) hold, we can derive

) B—-l EE:—:L}’ o (8—1)
le®f<|B| !ﬁH_QHa .

It is easy to soe that there exists a constant ¢; which depends on 8, V3, A1,
F1r1t+f N G:E dx but not on 4, such that

Hﬂmﬂ < Cy , ”V(m " <

Therefore, if ;

o=_"2 -1, (43)

we have
IV{:B—IJ l < ]7'{3-—1) V}a—m l - IV,SS_E] _VEB—-&}I S D IV?) o V_SU}I - |V5ﬂ) l
<[ D]+ L6942 4o [P+ [V
s, () Cq 1
-1 44
<Ll ol <SH ot ). (44)
We can now complete our proof of convergence. The conclusion we shall prove

is that if
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da |
. [(E2+Q+1) (2a+ (ea+@+1) da®)]¥3’ )

the iteration (84) converges. Here the ¢3 is the ¢, corresponding to cy=¢i, In fact,
the condition (45) means that for H —c3+Q-1, (88)holds. Thus we have
1
Bl <<— _
| | | (cs+1) ¢
Moreover, it is easy t0 see that |V V| <el, |V§|<e1, and further
| B® | <czdt] 8™},

Consequently, the following inequality holds:

s <[4, 16
0] <[ s] (46)
In what follows, we prove by induction that for any s,
|s@] <e|e® |, c=mp2-<1, (47)
Co 1

(48) means that (47) holds for s=2, We now suppose (47) holds for s=2, -+, m—1,
and prove that (47) also holds for s=m, Since (47) holds for s=2, ---, m—1, (44)

holds for s=m and m—1, i. e.,

(m—1) ¢l 1

e | 1)=EL

1——=2_)(c5+1

( cz+1 )( s
i<

Therefore for s=m, | E® | <<csdt]s® V| and

{2 Bl E{l—i,'l L EE (s—1) .
|6 < 1B |- <202

i. e, for s=m, (47 holds. Consequently, (47) holds for any s, which implies that the

iteration is convergent.
When A () changes its sign somewhere, the relation |4;.1 | + |A;_% |=|4 j+l

+ A4 ;-1 | will not hold at the places where A(x) changes its sign, which means that
(40) cannot be derived from (38) alone. But al these places, ]A;.,_%_ | < a’64x and
| 4.1 | <a’Q—-8) 4w, 0<<O<1 if the derivative of A(x) satisfies the relation |A4'(w) |
<a’, In this case we have {41 | + | 4,1 | <a'dw, and further

and

a’ A1
85| — |asf — |es| =1 5z Q4.
Therefore when (38) holds and

a’ At " s 24z
} [ ]
1-2>Hal, e, diS—S, (48)
- b ; :
we again have | B™1 (<< ——_ From this conclusion, we can see that if
o ag | B Ry
Asgmin{ 4% ; 24w } (49)

[(E;—!—Q—l—l) (2a-+ (EE+@+ 1)452)]% 2 +2(cs+Q+1) 4z
the iteration is convergent no matter whether the sign of A(a) is constant or not.
If U is a vector, and A(x) is a real diagonal matrix whoss elemenis and the
derivatives of whose elements are bounded, the same result can be obtained by quite
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a similar method. The main difference is that in this case the matrix is not tridiago-
nal. However, the number of elements in each row ig finite and except for at most
three elements, all elements are quantities of O(4t), so we can obtain the following
estimates similar to (37) and (40).

|B-t<— = —
E;lﬂ{]bﬂ — |a;| — |e;] —cdit}
&Hd 4 1-

where ¢ and @, are constants, Moreover, in this case we can also find a constant cs
such that (42) holds. Therefore we can find a constant e, such that the iteration is
convergent when At<{edw,

If A(w) is a general real symmetrio matrix, the convergence of iteration can be
proved by a similar method. Suppose 4 (2) = P(z) 14 (z) P(2), where A is the Jordan
form of A. Let V;=P,),;, According o (32), we know that V, satisfies

PyayPiiVioa+ Py Py'V i+ Pio, PV = Pyt Py (V)
j=1,2 -« J—1
If P{x) and P~*(z) are smooth functions, then PPy, Pb,P;, Pu,P;l can be
expressed as a sum of a diagonal matrix and a matrix whose every element is a
quantity of O(4dz), and the relation among the three diagonal matrices is similar fo

that in the case where A (&) is a real diagonal matrix. It is clear that in the present
case we can derive

1
”B_i “ H{;ﬂ ﬂﬂ? >
(B-G-Qu 7 )
where @, is a constani. The reason for the appearance of the term Qij—f is that there

exisl cerlain malrices whose every element is a quantity of O(dz), Therefore we
know from (38) and (48) that in order for the iteration o converge, 4t is required to
satisfy the following inequalities:

ﬁtﬂ ~ % ond t.'jm ~y = da: 2
2y a3+ Gu+Q 22 +1) + (34 B+ Qe 22 1) 4P<1 (50)
st .«.’Jm I mf/_"lt
and (Cz']' Q1‘|’Q1 -E—l—l)df» ey <1, (51)
That is, if Amg_Ql_ axid ¢ guitiafios
1
i 1
ind — Qe+ H"4a") + [(e+ H Av*)? + (1 — Qf4o) H* (2a+ H* 417
dtgmm{ H* (2a+ H A7) ’
& + H'Ap

2
where H*=c5+ (), +1, then the iteration converges.
Consequently, we have proved the following conclusion: if the coefficients of
partial differential equations and their derivatives are bounded, and Az is sufficiently
small, then there exists a constant ¢, such that the iteration converges when At<<edz,
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When Scheme B is used, an iteration similar to (84) may be adopted, and the
convergence of iteration can be discussed by the same method. The convergence
condition is also of the form of (49) or (52). [1] has discussed the convergence of
iteration, and for the case where A(w) is a diagonal matrix, proved that if di<<eds?, ¢
being a certain constant, then the iteration converges. It is clear that this condifion
is much stronger than (47),

Conclusion

For two classes of implicit schemes for the generalized non-linear Schrodinger
systern, we have discussed their accuracy, the convergence conditions of these schemes
and the convergence condition of an iteration for solving the corresponding nonlinear

difference eguations. In the following fable, we list these results for four typical
schemes,

Table
7, Sufficient eonvergence Sufficient convergence Aceuracy of
gonditions of schemes conditions of iteration schemes
4 M=0(MA5+) 3>0 Q<o O (424 4z3)
B ) Ai=0 (dx3+9), 50 di<ed O (Lt -+ M%)
C I A =0 (Mra+d) , 0220 no iteration O (M4 42?)
D | st=0(acd*), 520 sity Theabion O (282 + A

According to thigz table, we should say that Scheme D is belter than others
because it possesses a second order accuracy and a weak convergence condition, and
needs no’ iteration. Scheme B has first order accuracy and a strong convergence
condition, and meeds iterations, so it seems that this scheme is not as good as the
others.
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