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Abstract

The unbounded estimate is one of the {roublesome problems in Monte Carlo method. Particularly,
in the caleulation for the flux at a point, the estimate may approach infinite. In this paper, a collision
probability method is proposed in Monte Carlo caleulation for the flux at a point, and two kinds of
methods with the bounded estimation are presented: the quadratic collision probability method and the

importance sampling method. The former method is simple and easy to nse, whereas the latter is suitable
for calenlation of flux at many different points simultaneously. The practical caleulation indicates that

the variance of the present methods can be reduced by about 50 percent and the efficiency can be
increased by 2 to 4 time in comparison with the existing msthoda.

1. Introduction

The application of Monte Carlo method to the calculation for the flux at a point
plays an important part in the particle transport problems. It is because, first of
all, the caloulation of the point flux is offen encountered in the practical problems.
Second, because the problem of any looal flux caloulation can be solved through the
calculation for the flux at a point. Finally, there are some difficulties with numerical
calculation. Particularly, the problem is more gerions for those problems with
complicated geometry and other factors.

Lot @(r°) denote the flux at the point #°. In other words, @(r®)ds® is the average
track length by the particle through the volume element dr® near 29, Thug, in order
to caloulate the point flux ¢(#°) by the usual Monte Carlo method, it is necessary to
choose such a geometric volume V cﬂntmnmg r“ in it that the. @(r®) can be
'&pprnmmately obtained as follows:

p(r) mp () = pryar/ [V,

where |V'{ is the volume of the geometric region. In order to make the approximate
equation p(°) ~@(V) hold more exactly, the geometric region V is taken very sma,ll
Thus, the general Munte Carlo method becomes very difficult, .

There are probably two different ways to overcome the difficulty mentmned
‘above. One is to, exchange the location between the particle souree and the deteoctor
(the point flnx response. function) so:that the ﬂrlglﬂﬂl particle sourge is turmed. into

L
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the defector, while the original detector into the particle source. In thig way, the
problem with the point flux calculation can be changed into one with the non-point
flux caloulation as long as the original source is not a point source. In this aspect,
there are the reciprocal Monte Carlo™ ® and the adjoint Monte Carlo® %, Another i
to use the statistical estimation techniques to treat the variables analytically involved
where possible, or to use the biased sampling techniques to ireat the variables
which can ecaunse large fluctuations in the results. There are the directing probability
method™—® biased location campling method™, the maximum oross section method™
and the reselection method™*-%1 gngd go on.

The reciprocal Monte Carlo method has two important disadvantages. One is that
the particle source can not be gz point gource., Another, the application ig exiremely
limited, because the condition under which the source and the detector can be
exohanged is seldom satisfied. As for the adjoint Monte Qarlo the sitmation is
different. In this case,the reciprocity between the source and detector is done formally,
and does-not meet the condition which ig needed in the real reciprocity. Therefore, it
overcomes the second difficulty appearing in the reciprocal Monte Carlo method
suocessfully. But the adjoint Monte Oarlo does not remove the first disadvantage,
nevertherless, and it creates some new problems, such as the complicated random
walk, larger statistical error™ and so on.

The directing probability method is a very simple and easy to use. But if there s
soatlering medium near point 4, the estimation of the directing probability is
unbounded. For the homogeneons medium, Kalos proved that the estimation of the
directing probability method is not only unbounded, but also ite variance is
divergent (for the heterogeneous medium, as long as there is some scaltering medium
near the point #°, the variance of the directing probability method is divergent as
well). The boundlessness of the estimation often makes the statistical fluctuation
of the Monte QOarle estimate become large. Meanwhile the divergence of the variance
can directly affect the convergence rate.

The location biased sampling method which wag given by Kalos in 1963 is the
first method with finite variance to oOvercome the divergence of the directing proba-
bility method. But hig conclusion is based on the assumptiion of homogeneous
medium, fnonoenergetic particle and isotropic scatlering. On the other hand, not only
is the method approximate, also it is complicated o apply to the calculation for the
flux at a point, hence the method has not been widely used. The maximum cross
section method given by Mnxatizos is another one to solve the variance divergenoce
problem. It does not need any condition which must be satisfied by tho location
biased sampling mbthod. As the location biased sampling method, although they
have solved the problem about the varianoe divergence, they can not overcome the

The reselection method which was developed by Steinberg and Kalos in 1971 ig
the first one to solve the problem about the boundlessness of the estimate in Monte
Carlo caloulation for the flux at a point. Later, it was improved further by Steinberg,
Lichtenstein, Kalli and Cashwell, but it is stil] complicated. And it is not able to
caloulate the flux at many different points simultaneously, In this paper, we prosent
& collision probability method in Monie Carlo calculation for the flux at a point.
Based on this, two kinds of the bcunded estimate methods are given, namely,
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quadratio collision probability method and importance sampling method. In this way,
two disadvantages of the reselection method mentioned above are overcome.

2. Collision Probability Method

Collision probability method is very similar to the direcling probability method

in Monte Qarlo calculation for the flux at a point. Tt basic principle is that ( see the
Fig. 1) a collision point #* and =a scattering

azimuth angle are found so that the particle can
pass through the unit cube containing the point
r® in it for the fixed scattering angle. The
particle starting at point # and further under-
going collision contributes to the point Aux
@(1°), which is equal to the product of the
following four factors: the probability with
which the collision takes place at the point #*,
the probability with which the particle scatters
into the azimuth given, the probability withont
1—the fized scattering angle; further collision by the particle from #* to

2—the unit cubes :
3—the collision points * contributing and the track length by the particle through the

possibly to the unit cabe; unif cube.
4—the azimuth angles contributing possibly Now, the point flux @ () ig expressed in
to the unit cube; the form of the sum of the successive scattering

0—without any eollision from r* to r . .
6—the track length through the unit cube contribution: () =@o () + @1 (r®) +---. Lot

Fig. 1 The illustration of collision T, H,, £2, and W, stand for the location, energy,

probability method flight direction and weight for the particle to

leave the n~th scattering, regpsciively, Thus, the particle’s random walk higtory can

be expressed by the sequence 1T, B, 2., W, Therefors, according to the bagic

principle of collision probability method, the unbiased estimate to Lhe point flux with
the method is obtained as follows:

JFf(Eﬂ—-i_"‘E; £, ,— 0, \rdE ;-
Gn (1) =W oo Z, (1", Epr) oxp { - [ Z(r,s
| f(Bus~> B, 0, ,>Q|r)iE ¢

i A 30

iy, Bedi= [ 5,00100;, ) ai) i ey <2 (1)
where, nz=1, f fE’——)E_, £ — 0| r)dE df denotes the probability with which having
8 scattering at the point #, the particle changes its energy £’ and flight direction £
into df df2 near E and £, 3, (r, E) and 3, (r,
E)denote the scattering cross section and the .
total oross section at the point 2 and energy X,
E, i3 sampled from the density distribution

J(Bpy— E,, Qn—1—*ﬂ:]f*)/JE J( By 1> K,

W & . . &
_‘?n-l‘_'}‘gn I*P ) ‘ﬂf}i "?(.') 18 i conditional function, Fig. 2 The relationship between the
if the condition is satisfied,its value is 1, otherwise collision point and the scattering direction

# R
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it is O; the other quantities are defined in the Fig. 2.
Owing to Iim1'/ |42, 1% (r°—r,_1) | =1, it follows that

-0
i _ _ ! s __1__)
20l [y 1 X EL]*  2w[8 X (10— 1, 0) [? (z* ' (%)

This result indicates that the variance of the collision probability method is
definite. In other words, the method is a finite variance method for caloulating the

point Hux.

3. Quadratic Collision Probability Method

In fact, the quadratio collision probability method is derived from the collision
probability method in Monte Carlo calculation for the flux at a point. Its bagio
principle is to find such two collision points #,_; and #) that the particle is able to
pass through the unit cube containing #° for ithe fixed scaitering direction (cf. Fig.
3). The point flux contribution ¢, (9% (n>>2) which results from the particle starting
at '3 and undergoing two successive collisions ig equal to the product of four quanti-
ties as follows: the probability with which the parficle starting at #,_, made a
collision at the point r,_; satisfying the above conditiong, the probability with which
the particle starting at #,_; made a collision at the point #) satisfying the above
conditions, the probability without any further collision from # to #°, and the track
length by the particle through the
unit hexahedron V.

Suppose the random walk history
of a particle is {r,, H,, ﬂn, Wakno.
Thus, according to the basic prineciple
: of quadratic collision probability

Fig. 8 The illustration of quadratic method, we have the unbiased estimate
collision probability method of the point fiux ¢, (#°) with quadratic
collision probability method as follows:

- 7 T » _f(En—ﬂ—}En—ir Qn—ﬂ_}gﬂ— l'r:— ) »
‘F’n (".) Wn—QE.! (fn—l: Eﬂ*—ﬂ‘) f(Eﬂ_ﬂ"‘} En_..j_, Q,,_g——)-(z,._;]r._i) E&(rn; En—-l)

j(Eu-I —FE, 0, .- 8, 7)) {__
g f(E"‘i i EH: Qﬂ-—i — ﬂﬂ ] rn) o 0 Et (rﬂ-ﬂ+ tﬂ""ﬂi Eﬂ"‘ﬂ) di

— :“1 B (raa+ifdy 1, B, ) dt— I:" 2 (ri+i0,, B)dt }
) n(h_ﬁ(ﬂt)f.(:?ff ] R (3)
where
lyos= 10—, _,] Egﬂ:% ,
el GG
L I 5 @)

f:—l == P p—a-T Eﬂ‘—ﬂ n—2, f: = r:-—-l + ;n— Qn-.’l..
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Obviously, the estimate (3) is still unbounded. But, it is not difficult to solve
this problem. In order to do so, first introduce the biased density distributions for

£, _. £, .and £, as follows:

~ 1 1
fn--ﬂ (ﬂﬂ_ﬂ) Jr * I Qu_g P Qﬂ_g 2?!-' 4
o EmaxB 1

%0, 1
4} (£2, L2, 42, |Y? 2w °
Becanuge of the symmetry of distributions (B), that is, —4&4,-s and £2,_; have the
same distribution fa-a(£._z), —¥£2,-1 and £, have the same distribution f,_1(£d:_2
—0, _,), and so do the —£2, and £3, the same distribution f, (0,_.—>12,). If 82, 5,
) . and £2, are sampled from the distribuiion fa 2(fds_2), fa-1 (£2,_o—£2_;) and
fo(£3,_s—£2,), respectively, then it follows that (cf. Appendix)

; by
n—2 - ﬂﬂ—ﬂj

fn(g —ﬂ""}ﬂn =

" lis]
LY B (6)
g1
{
0-=_"_0
[ ]

and £, ,, £, _, and fX, obey the same distribution fs-» (£2,_2), fos(82,_o—> 2, 1)
and f,(&2,_»—>£1,), respectively. Further, suppose the energy E,_, E,_,and X, are

sampled from the distributions f(&;, s—> H.—., 2.0 ,|1r,:s / JE f (Bus— H,
aﬂ—-ﬂ"")ﬂn—ﬂlfn—ﬂ) dE, f(E._. — A1, . _.,—>8 |1, 1) /_[E f(Ew— K, £y, _,—
2, |75 1)dE and f (B> By, Bs> 11D /| f(Brs—B, By |rl) B
sequentially. Then, the estimate (3) is changed into

Pu#®) =16Wo_s*( f(Bus— B, Bpa—> (o703 dB
X 3@, Bod) | f(Brz—> B, Booy=>MFs |75 1) AE
% 3, (1, EL_i)JE F(B B, >0, |r)dE

1 In-l |

-
. X_BKP{—L 2 (Pt thd,_a, K, a) dtﬂjﬂ 2, (11

4162 E._o) di— :ﬂiEt(r:—l—tﬂ;, E:,,)di}
o o ) 3] (0D, o o) | n
‘(QH—EMn)I : : :

T+ is not difficult to see that the estimate (7) is bounded.

CQomparing with the reselection method, we see thab the quadratic collision
probability method is more suitable for calculating the flux at many different points
simultaneously. The reason is that the quadratic collision probability method is
affected by the point 7% only locally the lalest two collisions, while the reseleclion
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method is affected by the point #° globally in the entire prooess from in the
beginning to the end.

4. The Importance Sampling Method

The importance sampling method is one of the most importan$ methods amongst
the varions Monte Carlc sampling techniques. If the importance function is chosen
appropriately, importance sampling method is not only simple and easy to nse, but
also can rednce the variance of the estimate sharply.

Let y(r, F, £2) drdEdf} be the average numbers of the particle which was
emitted in ds near 7 and in dEd€} near B and £2 starting from the source 5 (7, B,
£2). Then x (v, E, £2) should satisfy the following equation:

o, B, @)= (| 20, 8, @T@-r| B, D)

Eﬂ’(r: -E”) ! ! ! r !
XA (B~ B, Q - Q|r)dr dE 4 +8(r, E, ), (8)

where T'(#'—>r | E’, £)dr is the average collision numbers per parficle beginning at
7’ with energy E’ along the direction £2" to the point 7 in dr".
By introducing the transformation

1(r, E, Q)= |Qx @ —1)|-7(r, B, ), (9)
It is easy to see that ¥ (2, K, £23) should meet the following equation:

% {QJ’X ('.r“—'r’)| T(rr___}riErj n!) 33('?, Ei’)_

L EIGETN Z(r, B
’ ; ’ / 75 S(r, 17, Q)
% (B —>E, & —>0Q|r)dr dE df - VEICEDIR (10}

Dus to Eq.(10), the particle’s random walk history can be obtained for the
importance sampling as follows, First, from the distribution

S (7o, Ho, o)
jJ‘ S(r, E, £ drdm w|$2o%x £2)] 2"
)y |f“-—1‘]

the particle’s initial location #, energy Ho, and flight direction £2, can be defined,
and the initial weight is

W= QW“JE I 5 (T;'”?—jf?ﬂ‘) drdl, (12)

Secondly, as soon ag the location 7, energy H,, flight direction £2, and weight W
leaving the m—th collision are defined, the collision location 2,41 is sampled from the
following distribution:

Ef (f‘l'ﬂ-l-l; Em)
et

T (rm_}'rm+1 ‘ Em: Qm) B

[‘lfml"‘rml

i it rm+1_rﬂ_ _
xexp{— [ B (Pt thdn, Bp) dt |5( 2, Tms2zTac), (18)
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while the energy H,,,; and the flight direction £}.... after the collision are sampled
from the distribution

I(Em—;’ Em-]-l:r nm'—} fﬂ+1|rm+1) ] 1 1 | (14)
J f(Em—}E-’ ﬂm"} m+1|fm+1)dE Wlﬂmﬂ:’(ﬂmﬂl 27 _
H

the weight W .1 is given by the following 02 Q%
equation (cf. Fig. 4)

Wﬂ:rwi= Wm « 20° | ﬂm x ﬂ?ﬂ-]-l]

Es (rm+1; Em)
E‘t (rm+1; Em)

X[, f(Bn> B, Qo> Opsa| ,2)dE,

(15)

Owing 1o the transformation (9), it

follows that Wy y=Wa-1° | £a_1X(#"—1y_1)]. Fig. 4 The relationship between the

For the collision probability method (1), particle’s location and its flight direction
{2, is sampled from the distribution

| B s>E, 0,0, r)dE,

therefore, if £3, is sampled from the distribution (1/mw+|fds—1 XL,
then the result (1) with collision probability method is turned into

50 () =W s 3y (1", By '{E f(By1— B, 2,y 0,|r")dE

)+ (1/2%) instead,

xoxp{~ . Z@usttlys, Byt R ACERT Byal.  (18)

Obviously, the estimate (16) with importance sampling method mentioned above is
bounded.

The importance sampling method is given for most general case, while the
reselection method is based on the monoenergitic assumption. Moreover, it is also
obvious that the importance sampling method not only is easy to sample and ils
random walk is simple and convenient, also its computational cost is less.

5. An Example

In order to examine roughly, the various calculation methods for the flux at a
point we take the following problem as an example, and compute it on the NOV.A-840
computer: there is a sphere with the radius Ry in the infinite space filled with a single
medium, the source with the isotropic emission is uniformly distributed everywhere
in the sphere. The source intensity is 1, and the total cross section is identically 1,
the collision is the isotropic scattering. It is desirable to compute the flux undergone
at most five collisions at the cenire of the sphere. The methods nsed are the directing
probability method, the location biased sampling method (the flight direction biased
sampling method), the maximum cross sechion methnd, the collision probability
method, the reselection methnd, the quadratic collision. probability method and the
jmportance sampling method. Because the reciprocial condition is satified in this
example (with the monoenergetic particle and the infinite homogeneous medium as
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well), the reciprocal Monte Carlo is also used to get the standard result.

The computation has been done for each case of RBy=2 4, 6, 8 and 10. The
computation results indicate that all results are in agreement with the standard result
except the result with the directing probability method. In fact, when R,==4, 6, 8,
and 10, the results with the directing probability method are lower than the standard
by 8%, 9%, 10% and 25% respectively. And the bounded estimate methods, such as
the reselection method, the quadratic collision probability method and the imporiance
sampling method, are better than the other unbounded estimate methods in variance
and efficiency. Among them, some methods are quite good. The variance and
efliciency of the reselection method, the quadratic colligion probability method and
the importance sampling method are shown in the Figs. 5—6. From thege figures, it is
clear that the variance of the quadratic collision probability method and the impor-
tanoe sampling method are always less than that of the reselection method, and their
efficiency is higher than mat of the reselection method. In fact, their variance is
reduced by 50%, and their efficiency is raised 2 and 4 times.

{ . .
i . { r"/
»
-"‘":7 / 7
00— P /
. B » %E-"#’ -E 1000 .
0, » .-"'/ E :
U I_ 4 =¥ %
2 % .
il i o/ ) =
I : , b
2 L 4 v [
v ,’/ 2 s
% ? =
10} X e
B ! ""[__'_:" 100 -
t :’/ " B
» y s E
e / i
2 ; .
) et
/
" !
I P ’
1 e oboe o F 0§
- 2 4 & 8 10 10—
: Re E
-
the reselection method; ———— the reselection method:
=——X---quadratic collision probability method: ~ ==X -—~ quadratic collision probability methods
+- (-« importance sampling method, ‘wes (e importance sampling method.
Fig. 5 The variance of varions methods Fig. 8 The efficiency of various methods
Appendizx.

Let =42, £, j and k together form a coordinate system. Then £2,_, is sampled
from the distribution fy_3(£3,_3) below:

£2,_2=cosnf i+ginmé -,
where ¢ is a random number. While the sampling method from the distribution
Su-1(8dy-—£,_,) is as follows:
£}, ;—sin o cos 2,8+ sin aein 2wl o f+cosa- k,
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where £, is a random number, 00, « is the angle formed by £, _, and £2°_.x L2, ., it
is defined from the following equation

cosa=(2£3—1)«|263—1],
£, is a random number like £;. Sampling from the distribution fu(£2,_—>£2,) is same
as from the digtribution fll-l (ﬂn_g‘—}ﬂﬂ__l) .
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