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Abstract

The aim of the electron microscopy image classification is to categorize the projection

images into different classes according to their similarities. Distinguishing images usually

requires that these images are aligned first. However, alignment of images is a difficult

task for a highly noisy data set. In this paper, we propose a translation and rotation

invariant based on the Fourier transform for avoiding alignment. A novel classification

method is therefore established. To accelerate the classification speed, secondary-classes

are introduced in the classification process. The test results also show that our method

is very efficient and effective. Classification results using our invariant are also compared

with the results using other existing invariants, showing that our invariant leads to much

better results.

Mathematics subject classification: 65D17.

Key words: Classification, Fourier transform, Translation and rotation invariant, Secondary-
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1. Introduction

Single-particle reconstruction (SPR) is a powerful method in three dimensional electron

microscopy [2], which demands that all of the projection images are from the nearly identical

macromolecular “particles”. The aim of the SPR is to find three dimensional structures of a

macromolecule given its two-dimensional noisy projection images at unknown random directions

[16].

One of the main problems in electron microscopy is that the object is damaged by the

exposure. To avoid the damage, low electron dose is used, and therefore the projection images

exhibit very low signal to noise ratios (SNR, below 1/3) and very poor contrast [17]. A way

to solve this problem is to put many identical objects onto the stage, which results in many

projection images of the same object at unknown orientations [11]. In order to reduce the effect

of the high noise and poor contrast, a large number of projection images (from 104 to 106) are

collected and analyzed, which means that the computation load is heavy even for a modern

multi-processor computer cluster [18]. Therefore, a primary step of the single-particle analysis

is the classification of the measured images according to their similarities. Images in the same

class are then averaged to reduce the noise level [3, 8].
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Previous Work

Classification is a procedure that categorizes images into different classes according to their

similarities [10]. Existing classification methods are divided into supervised classification and

unsupervised classification [2]. Supervised classification is to categorize the images according

to the similarity with templates or references, for example, projection matching. Unsupervised

classification is to classify the images according to their intrinsic differences. According to the

comparison among 2-D projection images, these projection images are classified into different

classes. Distinguishing among different image classes requires that the images in these classes

are aligned first. As a result, the computational load is heavy because any two projection

images need to be aligned before their correlations are computed. Alignment is a difficult task

since it is hardly possible to align a highly noisy data set without any deviation [14].

Van Heel et al. [9] propose a multireference alignment method in which the alignment

and classification steps are iteratively alternated until convergence. Assuming that a set of

class representatives have been selected, the similarities between the aligned images and the

representatives are measured. The image is assigned to the class with the maximum similarity.

Eventually, the representative of the class is recomputed as the average of the images assigned to

the class. This process is repeated till some convergence criterion is met. A possible shortcoming

of this classification method is that it depends on the initial selection of the class representatives

and it possibly traps in a local minimum. To solve these problems, a multireference alignment

algorithm based on a maximum likelihood (ML2D) was devised in [9]. However, ML2D [15]

method suffers from the attraction problem [17], a phenomena that a class-average with less

noise than others attracts more experimental images even if they belong to other classes.

Kerdprasop et al. [5] propose a weighted k-means algorithm for clustering data based on

similarity. The clustering process is speeded up by a reservoir-biased sampling technique for

data reduction. Recently, Yang et al. [19] describe an iterative stable alignment and clustering

approach that can extract homogeneous subsets of images and requires only a small number of

parameters and, with minimal human intervention.

Colars et al. [17] propose a novel method of clustering 2D (CL2D) images that is able

to address small differences between classes. With this method, all the projection images

can be split into specified number classes and at the same time the misclassification error

is minimized. The key ideas of the CL2D method are as follows: Firstly, the correlation is

replaced by the correntropy, a more effective metric. Secondly, the images are assigned to the

class by considering the images are more suitable for the class representative than the other

experimental images. This comparison avoids comparing an experimental image to the class

averages at different noise levels.

Our classification method is basing on a translation and rotation invariant. We therefore

review here a few existing translation and rotation invariants, which have been used in electron

microscopy [13, 14]. The detailed descriptions of these invariants are presented in section 2

of this paper. Van Heel et al. introduce in [13] a double auto-correlation function (briefed

as DACF) to classify the projection images. At first, the auto-correlation functions (ACF) of

the projection images are calculated and converted to the cylindrical coordinates. Then the

second ACFs in the angular direction of the ACFs in cylindrical coordinates are computed,

resulting in the DACFs. The authors in [13] point out that DACFs overweights the already

strong frequency because of the squaring of the Fourier components in calculating the ACF.

This disadvantage can be eliminated by using self-correlation function (SCF) instead of auto-
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correlation function. In the literatures [1, 4], the authors present a complete rotation invariant

(an invariant without losing phase information), named as AFMT. AFMT is defined using the

analytical Fourier-Mellin transform and angular corrections for the centralized images.

Our Contributions

In this paper we propose a classification method based on the application of a translation

and rotation invariant of two-dimensional images to avoid performing image alignment. The

main ideas of our classification method are as follows: (a) We propose a translation and rotation

invariant based on the combined use of the Fourier transform. (b) We classify the projection

images with an adaptive threshold ε, such that our class-sizes (diameter) in space are as close

to uniform as possible, avoiding the attraction problem even at low SNR. (c) We introduce a

secondary-class along with each class, which greatly accelerates the process of class adjusting.

(d) We propose a proper way to cut off the high frequency in the Fourier space making our

method anti-noise and robust.

The organization of this paper is as follows. In Section 2, we give the related mathematical

background of our method. In Section 3, we introduce the used notations and definitions, fol-

lowed with the classification method of the projection images, together with the implementation

details. Experimental results for two simulated data sets are given in Section 4. We conclude

the paper with a summary in Section 5.

2. Preliminary Mathematical Material

In this section, we introduce some preliminary mathematical material, including the contin-

uous translation and rotation invariant, the truncated translation and rotation invariant, the

spectrum power at the low frequency and the analytical Fourier-Mellin transform.

2.1. Invariants of translation and rotation

Continuous Translation and Rotation Fourier Invariant. Our classification method

relies on the translation and rotation property of the Fourier transform [12]. Let f1 be an

image and f2 the translated image of f1 with translation (x0, y0), i.e.,

f2(x, y) = f1(x− x0, y − y0). (2.1)

Then it is well known that the corresponding Fourier transforms F1 and F2 have the following

relationship

F2(ξ, η) = e−i2π(ξx0+ηy0)F1(ξ, η), (2.2)

where i is the imaginary unit. Hence, the Fourier spectra of f1 and f2 are the same.

When an image is rotated, the image of the Fourier spectrum is also rotated with the same

angle. If f2(x, y) is a translated and rotated function of f1(x, y) with a translation (x0, y0) and

a rotation angle θ0, then we have

f2(x, y) = f1(x cos θ0 + y sin θ0 − x0,−x sin θ0 + y cos θ0 − y0).

According to the Fourier translation and rotation property, the Fourier transforms of f1 and f2
are related by

F2(ξ, η) = e−i2π(ξx0+ηy0)F1(ξ cos θ0 + η sin θ0,−ξ sin θ0 + η cos θ0). (2.3)
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Let M1 and M2 be the magnitude functions of F1 and F2. Then from equation (2.3), we have

M2(ξ, η) = M1(ξ cos θ0 + η sin θ0,−ξ sin θ0 + η cos θ0).

It is easy to see that the magnitude functions of both the spectra are the same, but one is a

rotated version of the other. Rotational movement without translation can be represented as a

translational displacement in polar coordinates. i.e., in the polar representation

M2(ρ cos θ, ρ sin θ) = M1(ρ cos(θ − θ0), ρ sin(θ − θ0)).

It is denoted as

M̃2(ρ, θ) = M̃1(ρ, θ − θ0). (2.4)

Following equation (2.1) and (2.2), the modules of the corresponding Fourier transforms of M̃1

and M̃2 are the same. Therefore, the module is a translation and rotation invariant. Replacing

the polar coordinate by the log-polar coordinate, we obtain a similar translation and rotation

invariant.

The Spectrum Power at the Low Frequency. We present a method to determine the

cut-off frequency by computing the circles that enclose specified amounts of total image power

PT (see [7]). The total image power for an N ×N image I(u, v) is defined as

PT =
N−1∑

u=0

N−1∑

v=0

P (u, v),

where P (u, v) = [real(I(u, v))]2 + [imag(I(u, v))]2 is the spectrum power of the image I(u, v).

(a) (b) (c)

Fig. 2.1. (a) is a projection image of size 143 × 143 pixels and (b) is its Fourier spectrum. The

superimposed circles of radii r = 5, 10, 15, 20, 25, 30 and 36 enclose 91.07%, 94.97%, 97.42%, 98.46%,

99.07%, 99.43% and 99.68% of the image power, respectively. (c) shows the percentage of the image

power enclosed by the circle of radii r.

Fig. 2.1 shows a projection image with size 143×143 and the Fourier spectrum of the image.

The Fourier transform has been centralized and a circle of radius r with the origin at the center

of the frequency domain encloses α percent of the power, where

α =
∑

u2+v2≤r2

P (u, v)/PT .

In (b) of Fig. 2.1, we take the radii of r = 5, 10, 15, 20, 25, 30 and 36 pixels, respectively.

Each of the circles encloses α percent of the image power with α = 91.07%, 94.97%, 97.42%,
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98.46%, 99.07%, 99.43% and 99.68%, respectively. Therefore, if the frequency components are

normalized into [−π, π], we take the cut-off frequency as −π/2 and π/2 and more than 99.6%

of the total power is enclosed. From this point of view, the cut-off frequency can be required

to belong to [−π/2, π/2].

If the continuous Fourier transform is replaced by the discrete Fourier transform, equation

(2.4) is still true at the frequencies in [−π/2, π/2] and enough information is kept at these

frequencies. Hence, the spectrum from double FFT is also a translation and rotation invariant

in the range [−π/2, π/2].

The Analytical Fourier-Mellin Transform. Let f(t, θ) be the Fourier spectrum in the

polar coordinate (t, θ) of image I. Then the analytical Fourier-Mellin transform (AFMT) of f

is defined as

F (ω, ν) =

∫ R

0

∫ 2π

0

f(t, θ)tσ−iωe−iθνdθ
dt

t
,

where σ is a fixed and positive real number. In our algorithm, we weight the Fourier spectrum in

polar (or log-polar) coordinate with rσ. This means that the analytical Fourier-Mellin transform

is used. Following the suggestion of Goh [6], σ is set to 0.5.

2.2. Other invariants of translation and rotation

We review a few existing translation and rotation invariants. All these invariants have been

tested in our code.

Auto-correlation function. Auto-correlation functions (ACF) are well known and widely

used in signal processing. Let f be an integrable function in the L2 sense. Then the one-

dimensional ACF is defined as follows (see [13]):

ACF (r) =

∫ ∞

−∞
f(x)f(x − r)dx.

It is easy to see that ACF is a translation invariant. Two-dimensional ACF is defined in the

same way. To define a translation and rotation invariant for a two-dimensional image, the

two-dimensional ACF is firstly computed and then the ACF is transformed into the polar

coordinates. Finally, a one-dimensional ACF operation is applied to the angular coordinate,

resulting a rotational invariant. Since auto-correlation functions are computed twice, the final

result is called in [13] double auto-correlation function (DACF), which is a translation and

rotational invariant.

Self-correlation function. Let M be the module of the Fourier transform F of the function

f . The inverse Fourier transform of the module M is named as self-correlation function (SCF)

of f . Obviously, SCF is a translation invariant. To define a translation and rotation invariant

for two-dimensional images, the two-dimensional SCF is firstly computed and then the SCF is

transformed into the polar coordinates. Finally, a one-dimensional SCF operation is applied

to the angular coordinate, resulting a rotational invariant. The final result is called double

self-correlation function (DSCF), which is another translation and rotational invariant.

Complete rotation invariant. In the literatures [1, 4], the authors introduce a complete

rotation invariant. By completeness, we mean that there is no information loss in the process

of transformation. Therefore, the transformation is invertible. As a first step, the mass centers

of the given images are set (by translation) to the origin of the coordinate system. Assume



142 X. WANG AND G.L. XU

the centralized image, which is a translation invariant, is converted into the polar coordinate

f(r, θ). Then compute the analytical Fourier-Mellin transform of f(r, θ) as follows.

∀(k, v) ∈ Z×R, Mfσ(k, v) =
1

2π

∫ ∞

0

∫ 2π

0

f(r, θ)rσ−ive−ikθdθ
dr

r
.

From Mfσ (k, v), a complete rotation invariant is defined as:

∀(k, v) ∈ Z×R, Ifσ (k, v) = Mfσ (0, 0)
−σ+iv

σ eik arg(Mfσ (1,0))Mfσ (k, v)).

Since f(r, θ) is a complete translation invariant, Ifσ (k, v) is a complete translation and rota-

tional invariant.

3. Classification Algorithms

In this section, we first introduce some notation and definitions, then we present the classi-

fication algorithm outlines and the implementation details.

3.1. Notations and definitions

Fourier Transform Based Translation and Rotation Invariant. Firstly, the Fourier

spectra of the given images are computed. Then, the conversion from Cartesian into the po-

lar (or log-polar) coordinate is performed and then these spectra in the polar (or log-polar)

coordinate are weighted. Finally, the Fourier spectra of these weighted spectra in the polar

(or log-polar) coordinate are computed and the latter spectra are weighted again. The final

results are called the Fourier transform based translation and rotation invariants (briefed as

FTTR-invariants). Throughout this paper, we denote by Ii the i-th projection image and Ĩi
the FTTR-invariant of Ii.

Similarity Metric of Two Images. Let Ii and Ij be any two N ×N matrices representing

the experimental images. Let Ĩi and Ĩj of size P × P (P ≤ N) be the FTTR-invariants of Ii
and Ij , respectively. We denote by d(Ii, Ij) the similarity metric (distance) of two images Ii
and Ij , defined as

d(Ii, Ij) := d(Ĩi, Ĩj) = ‖Ĩi − Ĩj‖F ,

where ‖ · ‖F stands for the Frobenius norm of a matrix.

Classes. For a given ε, the class Ci and its representative Ri are defined as follows: Ci is a

collection of images and Ri is a member of Ci, such that d(Ik, Ri) < ε, ∀Ik ∈ Ci.

Let C̃i be a set of the invariants of all the projection images in Ci, named as invariant-class.

We use |C̃i| to denote the cardinality of the invariant-class C̃i. The invariant-class center Ci is

defined as

Ci =
1

|C̃i|

∑

Ĩj∈C̃i

Ĩj . (3.1)

Secondary-Class. Suppose a set of 2D images {Ii}ni=1 of size N ×N has been assigned into

M classes. Let

γ = max
i=1,··· ,M

max
Ik∈Ci

d(Ĩk, Ci), (3.2)

where C1, C2, · · · , CM are the invariant-class centers defined by (3.1). Then d(Ĩk, Ci) ≤ γ for

Ik ∈ Ci, i = 1, · · · ,M. The secondary-class Si associated with the class Ci consists of all the
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invariant-class centers Cj , such that d(Cj , Ci) ≤ 2γ. Note that each Ci may belong to several

secondary-classes.

3.2. Algorithms outlines

Suppose we are asked to classify {Ii}ni=1 into M classes. In the following, we present algo-

rithm outlines for achieving this goal. The detailed descriptions are given in the next subsection.

Fig. 3.1. (a) is a projection image. (e) is the rotated version of (a). (b) and (f) are Fourier spectra of (a)

and (e), respectively. (c) and (g) are Fourier spectra of (b) and (f) in polar coordinate, respectively. (c)

and (g) are weighted and become (d) and (h). (d) and (h) are the FTTR-invariants for classification.

Algorithm 3.2.1. Compute the FTTR-invariants

For i = 1, 2, · · · , n, do the following:

1. Apply discrete Fourier transform to all the projection images Ii, obtaining Fi. Fi is

computed using FFT. Sometimes we need to expand the sizes of all the projection

images by adding zeros before performing the FFT to raise the classification accuracy.

2. Compute the module Mi of Fi, and then find the valid area of Mi (see Section 3.3).

Assume the size of the valid area is N1 ×N1.

3. Convert Mi from Cartesian to the polar (or log-polar) coordinate form in the valid

area. The polar (or log-polar) value is weighted by rσ1 (σ1 > 0). Then compute the

discrete Fourier transform by FFT of the weighted polar form, obtaining an image Wi.

4. Set the valid area of Wi as [−N1/2, N1/2]× [−N1/2, N1/2]. Compute the module of

Wi in their valid area. The modules are weighted by (
√
2N1

2 − r)σ2 (σ2 > 0). The

output of this step is our FTTR-invariant Ĩi.
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The first weight rσ1 in step 3 plays a key role to the success of the classification algorithm.

Following the suggestion of Goh [6], σ1 is set to 0.5 in our implementation. The second weight

(
√
2N1

2 − r)σ2 is less important to the success of the classification and it makes the classification

result a little better. We require 0 < σ2 ≤ 2. Fig. 3.1 shows our invariants of the projection

images only with translation and rotation difference and Fig. 3.2 shows the invariants of the

different projection images. Since a valid area for the invariants in the Fourier space is used in

our algorithm, the invariants are antinoise.

Fig. 3.2. (a) and (b) are different projection images. (c) and (d) are respectively the invariants of (a)

and (b).

Algorithm 3.2.2. Classification with the FTTR-invariants.

1. Compute an initial value of ε. Set the iteration number s = 0.

2. Classify the projection images controlling with the ε. Suppose we get ν classes C1,

C2, · · · , Cν . Compute δ by

δ = max
i=1,··· ,ν

max
Ik∈Ci

d(Ik, Ri). (3.3)

3. If ν < aM (0 < a < 1) or ν > bM (b > 1), and s ≤ S (we take S as 10), compute a

new ε using the computed ν and δ. Set s as s+ 1. Then go back to step 2.

4. If aM ≤ ν < M, split the large classes until ν = M. If M < ν ≤ bM, merge the two

classes with the smallest distance until ν = M.

5. Adjust the classification using the minimum distance between the projection images

and the invariant-class center in the secondary-classes of its assigned class.

6. Find class representative or class average (optional).

In the third step, a (a < 1) and b (b > 1) are real numbers close to 1. The closer a and b

are to 1, the more uniform the classification result is. However, it causes the more computation

load for computing a new ε. In our experiments, we choose a = 0.95, b = 1.05.

In the sixth step, the representative of a class is the projection image such that its FTTR-

invariant is nearest to the invariant-class center in equation (3.1). The class average can be

computed using the public software xmipp average by aligning the images in the same class in

the real space. Fig. 4.5 and Fig. 4.7 show several class averages of our classification results.
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3.3. Implementation details

In this subsection, we provide the implementation details of our algorithms presented in the

previous subsection.

Compute an initial ε. Randomly choose p projection images and compute their distance

between each other. The average of these distances is taken as the initial value of ε. We wish to

have an initial value of ε that can better represent the general distance between the projection

images. It is not necessary to choose a large p. However, if p is too small, the initial value of ε

is not representative. In our experiments, we choose p = M.

Compute the valid area. The valid area in frequency domain in Algorithm 3.2.1 is computed

as follows.

1. Compute the average of {Mi}ni=1 in step 2 of Algorithm 3.2.1. M̄ = 1
n

∑n
i=1 Mi.

2. From R = 1 to R = N/2, compute the average of M̄ out of the circle of radius R and

denote the average as µR, where N ×N is the size of M̄ .

3. From r = 1 to r = R, compare the magnitude of µR and the module on the circle of radius

r till some module less than µR appears. Denote this r as DR. Let D0 = 2
N

∑N/2
R=1 DR. If

the frequency components are normalized into [−π, π], our cut-off frequency is taken as

−D and D, where D = min{ 2πD0

N , π
2 }. The reason that the cut-off frequency belong to

[−π/2, π/2] has been explained in Section 2.1. Let D0 = DN
2π . Then [−D0, D0]×[−D0, D0]

is taken as the first valid area in the second step of Algorithm 3.2.1.

Classification. Controlling with an ε, we classify the projection images progressively. At the

beigining, I1 is put into the first class. Suppose we have classified I1, · · · , Ik−1 into classes

C1, · · · ,Cm. Suppose Ri is the representative of Ci, i = 1, · · · ,m. Next we determine which

class Ik belongs to. Compute the distance between Ĩk and R̃i, for i = 1, 2, · · · ,m.

1. If min
i=1,··· ,m

d(Ĩk, R̃i) < ε, then Ik is assigned into Cβ with β = arg min
i=1,··· ,m

d(Ĩk, R̃i).

2. If min
i=1,··· ,m

d(Ĩk, R̃i) ≥ ε, then Ik is defined as the representative of the (m+ 1)-th class, a

newly created class.

Repeating the procedure above for k = 2, . . . , n, we obtain a classification {Cj}νj=1 of all the

images and a δ computed by equation (3.3).

Compute a new ε. According to the classification described above, given an ε, we get ν

classes. Obviously, the bigger ε leads to smaller ν. If ε is too large or too small, ν is far away

from the desired class-number M. Therefore, a new ε needs to be computed according to the

previously computed ν and δ. We compute the new ε by the bisection method from previous δ

and ν.

Split classes. If aM < ν < M, the largest classes are split. Let |Ci| be the cardinality of

class Ci. Sorting |C1|, |C2|, · · · , |Cν | from big to small, we get

|Cs1 | ≥ |Cs2 | ≥, · · · ,≥ |Csν |.

Then we split Csi , i = 1, · · · ,M− ν as follows:
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1. Find a projection Ii ∈ Csi such that its FTTR-invariant Ĩi is farthest away from Csi and

then find Iν+i ∈ Csi that is farthest away from Ii in Csi .

2. Taking Ii and Iν+i as the representatives of two newly created classes, all the projection

images in Csi are reassigned into the new classes Csi and Cν+i with the minimal distance.

By this splitting process, we split Csi , i = 1, · · · ,M − ν, and we obtain classes Ci, i =

1, · · · ,M. After the initial classification, the class-size (diameter) is within ε. Hence, we use

the number of the class elements instead of the class-size as a split condition.

Merge classes. If M < ν < bM, the closest classes are merged. This is done as follows:

1. Compute

d(Ci, Cl), i = 1, · · · , ν − 1; l = i+ 1, · · · , ν.

2. Sorting {d(Ci, Cl)} in the increasing order, we get

d(Ci1 , Cl1) ≤ d(Ci2 , Cl2) ≤, · · · ,≤ d(CiL , ClL), L = ν(ν − 1)/2.

3. For k = 2, · · · , L, delete the elements of {d(Cik , Clk)}
L
k=2 repeatedly as follows: If d(Cik ,

Clk) ∈ {d(Cik , Clk)}
L
k=1 is an element undeleted, then we delete all the element d(Cij , Clj )

if

j > k and {ik, lk} ∩ {ij, lj} 6= ∅.

After the deletion, we obtain a new increasing sequence {d(Cpk
, Cqk )}

L1

k=1 such that

{pi, qi} ∩ {pj, qj} = ∅ (i 6= j).

4. Reassign all the projection images in the class Cqk into the class Cpk
, for k = 1, · · · , ν−M.

Then delete the class Cqk , k = 1, · · · , ν −M. Finally, we obtain Ci, i = 1, · · · ,M.

Adjust classes. If ν = M, we begin to adjust the classification with the help of the secondary-

class defined in Section 3.1. Since our secondary-class Si records the invariant-class centers near

the i-th class Ci, adjusting the classification is performed in Si. This is done as follows:

1. Compute the secondary-class Si for i = 1, · · · ,M.

2. For each Ij ∈ Ci, do the following:

(a) Compute q such that Cq = arg min
Ck∈Si

(d(Ĩj , Ck)).

(b) If d(Ĩj , Cq) < d(Ĩj , Ci), reassign Ij to the class Cq.

3. If one of the following two terminating conditions is satisfied, stop the iteration. Other-

wise, go back to step 1.

(a) the iteration-number reaches a threshold (we take it as 20).

(b) the ratio of the number of the adjusted images to the total number of all projection

images is lower than a fixed percentage (we take it as 1%).

Compute the secondary-classes. The secondary-classes are computed as follows:
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1. Compute the invariant-class centers C1, C2, · · · , CM by (3.1).

2. Compute γ by equation (3.2).

3. Compute the distances d(Ci, Cj), i = 1, · · · ,M− 1; j = i+ 1, · · · ,M. If d(Ci, Cj) ≤ 2γ,

Cj is put into Si and Ci is put into Sj . We then obtain the secondary-classes S1, · · · , SM.

Remark 3.1. After the class adjustment, empty classes may appear. Hence it is possible that

the final number of classes may be less than the specified number M. However, since the initial

classification is almost uniform in class-size, the adjustment is performed locally. Therefore,

the final class number is close to the required number.

Remark 3.2. The reason why we choose 2γ as the radius of the secondary-class is that if

d(Ci, Cj) > 2γ and Iα ∈ Ci, then it is impossible that Iα is reassigned into Cj in the

classification-adjusting. This fact is proved as follows. Using the triangle inequality, we have

d(Ci, Cj) ≤ d(Ci, Ĩα) + d(Ĩα, Cj).

Since Iα ∈ Ci and Ĩα are the FTTR-invariants of Iα, we have d(Ci, Ĩα) ≤ γ. Therefore,

d(Ĩα, Cj) ≥ d(Ci, Cj)− d(Ĩα, Ci) > γ ≥ d(Ĩα, Ci).

Thus, it is impossible that Iα can be reassigned into Cj in the classification-adjusting.

4. Experimental Results

To validate our algorithm, we use the same simulated datasets as Colars et al. [17]. One is the

bacteriorhodopsin monomer. The other is the Escherichid coli ribosome. In our experiments,

we compare our results to those of CL2D [17]. We obtain similar or better angular results with

much less computational time. In CL2D classification, we use the correntropy and the robust

classification criterion. In all the experiments, the classification is adjusted with a maximum

iteration count of 20 or with adjusted image-number less than 1% of the total number of

the projection images. All the experiments for the simulated data sets are conducted on a

computer cluster in our institute with a specified number of nodes. There are 8 cores per node

(Intel(R) Xeon(R), 2.40GHz). CL2D has been shown to be an efficient method. It yields better

experiment results than the other well known methods, such as ML2D, PCA/K-means and

PCA/Hierarchical, especially for the data set with low SNR. Therefore, we compare in this

paper the performance of our method with that of CL2D.

4.1. Simulated Data: Bacteriorhodopsin with SNR=0.3

We add white Gaussian noise to the projection images of Bacteriorhodopsin with SNR=0.3

(see Fig. 4.1). We classify the projection images into 256 classes and get the similar result to

the classification of the images without adding noise. Fig. 4.2 shows the images in one class

from our classification result. Fig. 4.3 shows all the images in Fig. 4.2, but without adding

noise. We can see that similar projection images are put into one class. Here the sizes of the

projection images are increased to (4∗143)×(4∗143) in the same way as the experiment above.

Fig. 4.4(a) shows classification quality curves of CL2D and our method. In this classification

we use Gauss low-pass filter for both CL2D and our algorithm. We can see that we get the
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similar classification result to CL2D. Fig. 4.5 shows five class averages taken from our 256

classes. The execution time of CL2D running in parallel with 8 cores is about 306466s (about

85.1 hours). Our method using 8 cores takes about 459s. Using a single core, our method takes

about 2886s.

Fig. 4.1. Bacteriorhodopsin projection images with SNR=0.3.

Fig. 4.2. Images of one class from our classification result for bacteriorhodopsin projection images with

SNR=0.3.

Fig. 4.3. The projection images in Fig. 4.2 before adding the noise.
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Fig. 4.4. Clustering quality: probability density function estimation of the angular distance between

each projection assigned to a class and its representative for CL2D and our method. (a) For simulated

Data: Bacteriorhodopsin with SNR=0.3. (b) For simulated Data: E. coli Ribosome with SNR=0.03.

Fig. 4.5. The class averages of five classes among 256 classes of bacteriorhodopsin classification

(SNR=0.3).

4.2. Simulated Data: E. coli Ribosome with SNR=0.03

We use a public data set of a simulated ribosome which is available at the Electron Mi-

croscopy Data Bank (http://www.ebi.ac.uk/pdbe/emdb/singleParticledir/SPIDER FRANK

data (Baxter et al., 2009)). This data set contains 5000 projection images from random di-

rections of a ribosome bound with three tRNAs at A, P and E sites. Fig. 4.6 shows a few of

the sample images from this data set with SNR=0.03. In this experiment, the same low-pass

cut-off frequency components are used by CL2D, our direct classification and our classification

after expanding the sizes of the projection images to (4 ∗ 130)× (4 ∗ 130). Fig. 4.4(b) shows

the classification quality curves for classifying the projection data into 256 classes by the three

methods. It is easy to see that the direct application of our method yields a little better clas-

sification result than CL2D. When the image sizes of the projection images are increased, we

get an even better result. Fig. 4.7 shows five class averages from our 256 classes by the direct

classification (without expanding).

The execution time of CL2D running in parallel with 8 cores is about 264487s (about 73.5

hours). Our direct method in 8 cores takes only about 48s. The classification after expanding

the sizes takes 290s in 8 cores. Using a single core, our direct method takes 240s, and our

method after expanding the sizes takes 1850s.

Remark 4.1. The experiment results show that our algorithm is much faster than CL2D.
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Fig. 4.6. Images of E. coli ribosome, SNR=0.03.

Fig. 4.7. The class average of five classes among 256 classes of E. coli ribosom classification (SNR=0.03).

The reason is as follows. Suppose we are asked to classify n images into M classes. Firstly,

we compute n FTTR-invariants, including computing FFTs, taking the module and doing

weighting. Then we compute O(n ∗ M) distances between two invariants. In computing the

distance of a pair of images, we do not need to perform the alignment of the images. In algorithm

CL2D, O(n∗M2) distances between two images are needed. At the same time, the same number

alignments are needed. In computing the class averages, our algorithm computes the averages

of the invariants in one class by summation. In algorithm CL2D, to compute the class averages,

the images in one class have to be firstly aligned and then do the summation. When the classes

are adjusted, all the alignments have to be recomputed. Therefore, our algorithm avoids huge

computation on alignment.

4.3. Comparative results using different invariants

We have mentioned that several invariants of translation and rotation have been proposed

in the past decades. Each of them can be used to compute the similarities of different images

to be classified. In this subsection, we present a few comparative results for using different

invariants in our classification method. The first comparison is using the same data set with

the same noise and using different invariants. Fig. 4.8 shows the classification quality curves

for classifying 5000 projection images into 256 classes. The probability density curves show

that if the data set is clean (no noise), the invariant DSCF yields the best results, then our

method follows. AFMT is the worst and DACF is the second worst one. If the data set has

noise, our method yields the best results and all the other invariants give unacceptable results.

This further illustrates that our method is much more robust.

In the second comparison, we compare the behaviors of each invariant with respect to the

noises. The probability density curves in each figure of Fig. 4.9 are for the same data set

and same invariant but different noise levels. Again, the 5000 projection images of the data

Bacteriorhodopsin are classified into 256 classes. The figures clearly show that our method is

not sensitive to the noise and therefore it is robust. DSCF yields the second best results. The

other two invariants do not lead to ideal results, especially for the highly noisy data.
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Fig. 4.8. Probability density curves for classifying 5000 projection images using different invariants.

Left: Using data Bacteriorhodopsin . Middle: Using data Bacteriorhodopsin with white Gaussian noise

at SNR=0.3. Right: Using data E. coli ribosome with SNR=0.03.
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Fig. 4.9. Probability density curves for classifying the projection images of Bacteriorhodopsin with

different level of noises and using different invariants. Top left: Using DACF. Top right: Using DSCF.

Bottom left: Using AFMT. Bottom right: Using our invariant.

Remark 4.2. In defining our FTTR-invariant, we take module twice. This means that the

phase information is lost. It is natural to think that using the complete invariant AFMT (no

information loss) may be a more desirable choice. However, for solving the classification problem

under the noisy circumstances, our invariant performs much better than the complete invariant.

Hence, a problem that need to be further investigated is that why the complete invariant does

not work well.



152 X. WANG AND G.L. XU

5. Conclusions

We have presented a fast and effective classification method for classifying electron mi-

croscopy images. Firstly, a weighted translation and rotation invariant based on the Fourier

transform is introduced. Using this invariant, we avoid image alignment. A proper weight is

selected bringing the success of our classification. Secondly, a proper cut-off frequency is chosen

in the Fourier space, making our method antinoise and fast. Thirdly, a secondary-class associ-

ated with each of the classes is introduced, which speeds up greatly the classification-adjusting.

Finally, the projection images are classified with an adaptive ε so that the distribution of every

class in the space is as close to uniform as possible. From our experiment results, we can see that

the projection number in every class is nearly in the same order of magnitude. Furthermore,

our classification method does not suffer from the attraction problem even for the data set with

low SNR. The experimental results also show that our method yields equally good (sometimes

better) results as C.O.S. Sorzano et al’s and is several hundred times faster.

We have also compared the performance of our invariant with other three existing invari-

ants (DACF, DSCF and AFMT). Using our invariant yields much better classification results,

especially for the noise data sets. Our implementation C program is freely available from

http://lsec.cc.ac.cn/∼xuguo/misce.htm.
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