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Abstract

Based on the Kirchhoff transformation and the natural boundary element method, we
investigate a coupled natural boundary element method and finite element method for
quasi-linear problems in a bounded or unbounded domain with a concave angle. By the
principle of the natural boundary reduction, we obtain natural integral equation on circular
arc artificial boundaries, and get the coupled variational problem and its numerical method.
Moreover, the convergence of approximate solutions and error estimates are obtained.
Finally, some numerical examples are presented to show the feasibility of our method. Our
work can be viewed as an extension of the existing work of H.D. Han et al..
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1. Introduction

The standard procedure of the coupling of boundary element and finite element can be
described as follows. We introduce an artificial boundary to divide the original domain into
two regions, an unbounded domain and a bounded one on which the boundary element method
and finite element method are used, respectively.

In this paper, the coupling of natural boundary element method (NBEM) [4,5,19,20] and
finite element method (FEM) which is also called artificial boundary method [7-9] or DtN
method [6,13] is applied to solve boundary value problems in a bounded or unbounded domain
with a concave angle.

Let 2 be a bounded and simple connected domain with sufficiently smooth boundary 02 =
I'yul'y UT', where

To={(r,0)|0<r<a}, I'a={(ra) | 0<r < b},
D= {(r0) | r=v0) >0, 0<0<a, $(0)=a,(a)= b},
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and I is a smooth curve. Here « is a concave angle (Fig. 1.1). Particularly, when oo = 27, Q2 is
a cracked domain. And € refers to the unbounded domain with boundary 092 =TyUT', UT,
where T is defined as above and I'g and I', are changed by

To={(r,0)|0<a<r} Ty ={(r,a) | 0<b<r}
The problem can be described as follows [3,8,10,11, 16].

=V - (a(z,u)Vu) = f, in Q or Q°,

0

gu _ , on 'y UTl,, (1.1)
on

u =0, onl',

where a(-,-) and f are given functions with various properties which will be ranked in the
following. When we study the domain Q¢ problem (1.1) is not well posed. We need an
appropriate boundary condition at infinity

u(zx) is bounded, as |z| — oc. (1.2)

Problem (1.1)—(1.2) has many physical applications in, e.g., the field of magnetostatics, where
a is the magnetic permeability and u is the magnetic scalar potential; the field of compressible
flow, where a is the density and u is the velocity potential. See [2,15] etc. for more numerical
results about problems of this kind with bounded domains. And note that, when we consider
problem (1.1)-(1.2) in the unbounded domain Q¢ and get rid of the boundary conditions on I'y
and T',,, this is the right problem which was discussed in [8] by the artificial boundary method.
Hence, our work can be viewed as a continuation of [8]. Moreover, we give an error analysis in
Section 3, which was not presented in [8].

Fig. 1.1. The illustration of domains: the left is 2, and the right is Q°.

Following [8,11], suppose that the given function a(-,-) satisfies
0 < Cy<alz,u) <Cqh, VueR, and for almost all z €  or € Q°, (1.3)

where Cy, C; € R are two constants, and

la(z,u) — a(z,v)] < Crlu —wv|, V u,v € R and for almost all z € Q or z € Q°, (1.4)
) a 9% .
with a constant C, > 0. We also assume that 75’ 92 are continuous.
s’ Os

In the following, we suppose that the functionf € L?(Q) or f € L?(2¢) has compact support,
i.e., there exists a constant Ry > 0, such that

suppf C Qp, = {x eR? | |z| > RO} or {ac eR? | |z| < RO}, (1.5)
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which corresponds to the domains €2 and ¢, respectively. We also assume that
a(x,u) = ag(u) when |x| < Rg or |z| > Rp. (1.6)

Now taking the vertex of the angle a as the origin of coordinates and put I'g on the x—axis.
Drawing an arc as below

I‘R:{(R,G) |O§9§a}, in  or Q°. (1.7)

Then, I'g divides the original domain € or 2¢ into two sections. And if continuous conditions
(1.10) of [8] on I'p are satisfied, then the original problem can be solved. Particularly, when
a(z,u) = a is independent of & and w, [4,19] have obtained the natural integral equation. One
can also refer to the book [20] for more details. In the paper, we shall derive natural integral
equations for more general quasilinear elliptic equations in a bounded or unbounded domain
with a concave angle. We introduce the so-called Kirchhoff transformation [12]

w(z) = /0 ap(§)d¢, for z € Q., (1.8)

then we have
Vw = ag(u)Vu. (1.9)

The rest of the paper is organized as follows. In section 2, we obtain the natural integral
equation for problem (1.1) in a bounded or unbounded domain. In section 3, we give the
equivalent variational problems and the finite element approximations. We also discuss the
reduced problem’s well-posedness and the convergence result. What’s more, we give an error
analysis to show how the errors can be affected by the order of artificial boundary condition,
the mesh of the domain and the location of the artificial boundary. At last, in section 4, we
present some numerical examples to illustrate the efficiency and feasibility of our method. Our
paper can be actually considered as a sequel of [8].

Throughout this paper, we denote C' as a general positive constant independent of R, N
and h, where h and N are defined in section 3.

2. Natural Boundary Reduction

In this section, by virtue of the Poisson integral formula and the natural integral equation

for the linear problem, we shall obtain the corresponding results for the quasilinear problem in
Q and Q°.

2.1. The problem in the bounded domain

Let us introduce an artificial boundary I'p which
divides €2 into two parts 2; and €., where €. is a
sector. The domain €2, can be described as follows

Q.2 {(r6)|0<r<R0e0a)}
Tr 2 {(R,0)]60€(0,a)},

Tge, I'qe is the restriction of I'y, I', of section 1 in
Q. (Fig. 2.1) Fig. 2.1. The illustration of domain 2.
e . 2.1).
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Then by (1.1), (1.8), (1.9), the problem confines in €. can be described as below:

—Aw=0, in €.,

i
0

— =w,, onlpx.

=0, on I'pe UT e, (2.1)

Then, there are the Poisson integral formula

1 27 « 1
w(r,@):—(Ra fra)/ [QJ o
2a 0o lr'e + R —2(Rr)acosZ(0—0)

1 (2.2)
+— . [wr,0a",
re + RE —2(Rr)= cos T (04 ¢)
with 0 < r < R, and the natural integral equation
ow T @ 1 1 o
on _4042R/0 (sin2 %F + SinZ %ﬂ)w(fiﬁ )do’. (2.3)

Egs. (2.2) and (2.3) can also be expressed in the following Fourier series forms. One can refer
to [4] and Appendix of [18] for more details.

+oo nx
1 ry e [ , nmo nmb
w(r, 0) = > ;gn (E) /0 w(R,0") cos — cos dae’, (2.4)
with r < R, and
/
_7" Ra2 Z Enn/ (R,0") cos 7%9 cos nf ay’, (2.5)

where €, refers to: when n = 0, ¢, = 1; when n > 0, ¢, = 2. Equation (2.5) can also be
changed to the following equivalent form

ow(R, 9’ nﬂ'G n7r9' ,
—— i 2.
o Z / —a5 5 — de’. (2.6)
From (1.9), we have
ow ou
— el 2.7
on ao(u) on 2.7)
ow  Ow . o ..
By (2.5), (2.7) and il we obtain the exact artificial boundary condition of w on I'g
n r
u(R,0") nmd nmt)’

do’ = 1 (u(R,0)). (2.8)

ag (y)dy) cos — cos

ao(v) 8n Roﬂzgnn/(/

Then by (1.1), (2.8), the original problem confines in €; can be defined as follows:
=V (a(z,u)Vu) = f, in Q;,

0

= 0, on I'y; U Ty,

on (2.9)
u =0, on T,

)
ao(u)a—z = #(u(R,0)), onTp,
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with FO'L' = FO N ﬁi, Focz = Fa ﬂﬁl
Therefore, the solution of problem (2.9) is the restriction of the solution of problem (1.1) in
the bounded domain §2;.

2.2. The problem in the unbounded domain ¢

Firstly, we introduce an artificial boundary I'p
which divides Q¢ into two parts ; and €., where
Q. is the unbounded domain. The domain 2, can be e
described as follows

Qe 2{(r,0) |0<R<r0c(0,a)}
FR £ {(R,@) | ZAS (O,Q)},

Toe, Tne are similarly with T'g, T’y of section 1. (Fig.
2.2).
By (1.1)—(1.2), (1.8)—(1.9), the problem confines in Q. can be described as follows

Fig. 2.2. The illustration of domain Q°.

—Aw =0, in Q.,
ow
= 0, on F()e U Fae;
n
w0 (2.10)
on = Wn, on I'g,

w(z) = O(1), as |z] = +oo.

Then, there are the Poisson integral formula

N 1
et =g (% %) | Lo )

co

1

T } (R,0')dd,
ra 4 Ra—Q(RT)acos—H—i—G’

(2.11)

with 0 < R < r, and the natural integral equation

ow T o 1 1
o 0')de.
on 4a2R/0 (sin2 o G %W)W(R, ) (2.12)

Egs. (2.11) and (2.12) can also be expressed in the following Fourier series forms

+o0 nr pa /
1 RN , nmo nmd
_1 R nmt 2.1
w(r,6) ” ngzo sn( " ) A w(R,0") cos . cos de’, (2.13)
with R < r, and
ow nmwd nmd
— = — 2.14
5 = Ra2 E en / (R,0") cos . cos de’, (2.14)

where &, refers to: when n = 0, ¢, = 1; when n > 0, &, = 2. Equation (2.14) can also be
changed to the following equivalent form

I /
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From (1.9), we have

ow ou
ow _ ou 2.16
on ao(u) on ( )
Combining (2.14) and (2.16) and o= g e obtain the exact artificial boundary condition
of u on I'g,
ou =X o, rulie) nmo N
ao(u)% = Bz ngosnnA (A ao(y)dy) €08 — = €05 — do" = 1 (u(R,0)). (2.17)

Then by (1.1), (1.2), (2.17), the original problem confines in €2; can be defined as follows

-V (G(I, U)VU) =/ in §;,

% = 07 on I'g; U Fai;
n 2.1
u = 0, onl, (2.18)

P
ao(u)a—z = X (u(R,0)), onTp,

with FO'L' = FO N ﬁi and Fai = Fa N ﬁz
Therefore, the solution of problem (2.18) is the restriction of the solution of problem (1.1)
and (1.2) in the bounded domain ;.

3. Finite Element Approximation

3.1. The equivalent variational problems

Now we consider the problems (2.9) and (2.18). We shall use W™ ? denoting the standard
Sobolev spaces. || - || and | - | refer to the corresponding norm and semi-norm, respectively.
Especially, we define H™(Q) = W™2(Q), || - llma = || - lm2.0 and | - |m.a = | - |m2.q. Let us
introduce the space

V ={ve H ()| vlr =0}, (3.1)

and the corresponding norms

ol g, = /Q lv[2da,

The boundary value problems (2.9) and (2.18) are equivalent to the following variational prob-
lem: Find u € V, such that

(= [ (o + VoP)da
Q;

D(u;u,v) + D(u;u,v) = F(v), Yv eV, (3.2)
with
D(w;u,v) */ a(z,w)VuVudz, (3.3)
Qi
too / ’
D(w;u,v) Z n // ao(w(R,0") augzle ) au(azz .9) 'nm;e i n—ﬂ-edG 'd), (3.4)

- /Q F@)o(a)dz. (3.5)
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Following [4] and [20], for any real number s, we have the equivalent definition of Sobolev spaces
H*(T'g) as follows

+o00 +oo s
VfeHTR) & f(RO)= > (ei%‘) +e‘i%")fn, > [1+ (na—ﬁ)ﬂ | fal? < o0

]. « ;N NI
with f, = —/ (e*ITG + elTe)f(R, 0)df. The norm of H*(I'r) can be defined as follows
0

2cr
= nm s
@022 Y [1+ D Il
n=—oo
Particularly, when s = 0, we have

+oo 1

2
1R Olor 2 [ 3 1] = 1502

Similar with [19], we have the following result

Lemma 3.1. There exists a positive constant C > 0 which has different meaning in different
place, such that

~

|D(w;u,v)| < Cllullyg, vlg,: Dlusu,u) = Coluli g, V¥ u,v,we V.

1,Q;

Proof. For u,v € V, we assume that

+o00 too
TR SR GO B TRD SR )
n=—oo e

Then we have

9 +oo . iae inn
a—Z(R,G): Z m%un<e af_e ae),

a +oo . inn .
8—;(1%,9): Z m%%(e a0 _e ae).

By property (1.3), Cauchy inequality and the trace theorem, we have

1

-~ = 77//T2 2 = 77//T2 %
Do <0 3 Tr-tul) (30 T clonf?)

=— n=-—

< Cllullyjzrpllvlljzrs < Clulluellvive, VuveV.

Next, we show that ﬁ(u, u,u) > C’0|u|igi, for any u € V. Firstly, for problem (2.9), for any
given v € V', let us consider the following auxiliary problem

=V (a(z,u)Vu) =0, in Q;NQ,

ou
= 0, on I'g; U T4, (3.6)
u =0, on I,

u=v, on I'g,
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with T'g; = Do N, Tai = ['e NQ;. From the analysis in Section 2.1, we know that the solution
u of the above problem (3.6) satisfies

a0(u) 0 = 3 (u( R, ).

We multiply (3.6) by u and integrate over ; N Q), we have

ﬁ(u;u,u) = / ao(uw)|Vul?dz > C’0|u|iQi.
Q

7

Secondly, for problem (2.18), for any given v € V, we consider the following auxiliary

problem
=V (a(z,u)Vu) =0, in Q;NQ°,
ou
o 0, on I'p; U Ty, (3.7)
U=, on I'g,
u(z) = O(1), as |z| = +oo,

where T'g;, T'y; are denoted by problem (2.18). From the analysis in Section 2.2, we know that
the solution u of the above problem (3.7) satisfies

ao(u)% = (u(R,6)).

We multiply (3.7) by u and integrate over Q; N, then we can obtain the desired result. This
completes the proof. O

In practice, we need to truncate the series in (2.8) and (2.17) for some nonnegative integer

N, i.e.,
(ao5)

ol ) nw  nwb’
AN (u) = S snn/ / ao(y)dy ) cos — cos do'. (3.9)
! Ra? 7;0 0 ( 0 0 ) e e

That is, we shall use the summation of the first N terms in (2.8) and (2.17). Now we begin to
consider the approximate problems of (2.9) and (2.18), respectively

=), (33)

with

—V - (a(z,u™)Vul) =0, in Q;NQor Q;NQC,

ouN
W = 07 on FOi U Fai; (3 10)
uV =0, on T, '
) N
ao(uN)g—n =N W), onTlg,

where Tg;, T'y; are defined as (2.9) and (2.18). And problem (3.10) also has the following
equivalent variational problem: Find u" € V, such that

D(N;u™N ,v) + Dy(uN;uN,v) = F(v), Vv eV, (3.11)
with
N
~ . 1 en [*[C W Ou(R,0) Ov(R,0) . nmd | nml
DN(w,uw)—;nEOZ/O/O ag(w(R,6")) 50 59 S sdeGdH. (3.12)

Similar with Lemma 3.1, we have
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Lemma 3.2. There exists a positive constant C, such that

1D (w;u,0)] < Cllullig, [ollve, Dy(usu,u) = Colulig,, ¥ u,v,w € V.

3.2. Finite element approximation

Divide the arc I'g into N7 parts and take a finite element subdivision in €2; such that their
nodes on I'g are coincident. That is, we make a regular and quasi-uniform triangulation .7}, on
Q;, such that

0 = U K, (3.13)
Ke,

where K is a (curved) triangle and h is the maximal diameter of the triangles. Let
Vi = {’Uh € V| v|k is a linear polynomial, V K € %} (3.14)

Then the approximate problem of (3.11) can be written as

{ Find ulY € V4, such that (3.15)

D(uhN; uhN,vh) + ﬁN(uhN;uhN,vh) = F(vp), Y vy € Vp,.
Similar with Proposition 6.1 in [20] and existence and uniqueness in [10], we have

Lemma 3.3. The variational problems (3.2), (3.11) and (3.15) are uniquely solvable.

3.2.1. Convergence Theorems

In this section, we obtain the convergence result of the problems discussed above. We let
u,ul¥ € H?(;) and u} € Vj, be the solution of problems (3.2), (3.11) and (3.15), respectively.
We also assume that

Vi € VAW for some € € (0, 1). (3.16)

And we require that {V4}r—0 is a family of finite-dimensional subspaces of V N C(£2;), which
satisfies for any

v e VNC(Q), there exists {vp} v, € Vi, |lv —wpll1,0, = 0, as h — 0, (3.17)
lvall1,24e,0, < C(v) for any h, (3.18)

where C'(v) > 0 is independent of h.

Remark 3.1. The continuous piecewise polynomial spaces, such as (3.14), satisfy the condition
(3.16). And if we let vy, = v, where II, : V' — V}, is the interpolation operator, then by
(3.18), we have

[vnlli24e,00 < v = vll124e,0, + lv]l124e,0, < C(0).
Following the convergence theory in [10,20], we have the following result

}llir% luy —ul|10, =0and u¥ € VW2t v N > 0. (3.19)
—

Moreover, we can obtain the following result.



The Coupling of NBEM and FEM for Quasilinear Problems 317

Lemma 3.4. Let u" be the solution of (3.11) and u be the solution of (3.2). Then we have

lim lu—u
NS

(3.20)
Proof. From (1.3), (3.11) and Lemma 3.2, we have

[ |2, < C[D@N;u™ ,u™) + D™ ;u, u)]
:C[F( )—I—D( N N N) ﬁN( N N UN)]
< Ol flloe; - [lu (uN;uN,uN) Dy (u™;u™ ,uM)]].

For u™ € V, we assume that

wN(r,G) +oo nm
N(Tael) :/O zZ: ( ) ° ST”(;Q , Vor> Ro,

+oo

0
N(R,0) = uncosﬂ.
n=0 a
Then by
o m=mn=#0
*  nmd . mmb 2’ ’
/0 sinTsin 5 df = ,%, m=—n#0,

0, otherwise.
We have the following result

D@0 u) = D (s u, )

7‘_ Z €n/7aaw (R,0") 0u™ (R, 0) inn7r9’ . n_7r9d9,d9‘
a

N 00
7‘ Jio nm”<&)%w Y
n=N+1 4 R

Roy &2 - I nT 5\ 2 row= nT . 9\ 2 3

<o(F) 713 () el 3 (o () ]
n=N+1 n=N+1

Ro (Ntl)w
<0(Z) " MVl e,

R (Ntl)w
<o(%) 7 IVl

From R > Ry, we obtain that {uN } is bounded in V. Therefore, there exists a subsequence

{u™"} such that u™» — @ € V. Then similar with the proof of Lemma 3.4 of [8], we obtain

(3.20). O
By the above lemmas, we get the following convergence result.

Theorem 3.1. Let u € H?(S;), and the assumptions (3.16)—(3.18) be satisfied. Then we have
lim  |lu—u) |10, = 0. (3.21)

h—0,N—o0

Remark 3.2. Noticing that, the above convergence theorem is obtained for the unbounded
domain with a concave angle. Without any difficulty we can obtain the similar convergence
result for the bounded domain with a concave angle.
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3.2.2. Error Analysis

In the following, we shall get error estimates for the approximate solution obtained from the
FEM-NBEM discrete scheme. We assume that the solution u of problem (1.1) satisfies

ulg, € VAWHR2E(Q,), e >0, k> 2.
For simplicity, let us define the following notation

Alu; u,v) £ D(u; u,v) + D(usu,v),
Ay (u;uN,v) £ D0, v) + Dy (u;u,v),
ZN(uhN;uhN,v) =S D(uh U, N op) + DN(uh ;ufbv,vh).

Then problems (3.2), (3.11) and (3.15) can be replaced by the corresponding simple forms,
respectively. Now we introduce the bilinear form A’(u;-,-) and A% (u”;-, ) defined by

A’(u;v,z):/ ga(z w)oVu - Vzd:ch/ a(z,u)Vv - Vzdx

Q;
aro aao 8 0z = €n . nmld | nmwd
/ Vog (R, 9)89(R H)Enﬁsm " sdeH de

+ /7aa (@.0) 2 (7,002 (R, 0) f Engin " 0 " g
0Jo 0 ’ 89/ ’ 89 ’ =1 (8% (6% ’

nm

v 2) = / %(x,uN)vVuN - Vzdzr + / a(z,u™N)Vov - Vzdr
i S Q;

are 0@0 oulN 0z = en . nmbd . nmd
/ u™ v 50 (R0)89(R G)nE_IEsn " sn—d9d9
are Ov 0z =X n7r9' nm
N / htied n . .
+/0/0 ap(z,u )_89’ (R’9)89(R’9)n§:1 osin— —d9 de.

0
Let V' be the dual space of V. By (1.3) and continuity of a—a(-,u(-)), we obtain that
s
A’(u;-,+) is bounded in £2;. Then there exists an operator T': V — V' such that

(Tv,2) = A'(u;v,2), Vo,z€V. (3.22)
Similar with the proof of [14], we have the lemma as follows

Lemma 3.5. The bilinear form (Tv,v) defined by A’(u;v,v) satisfies the following inequality

(Tw,z) + K(| ) > Clolig,, YveV, (3.23)
where K > 0 is a sufficient large constant.
We assume that
Al(u;v,2) =0, VzeV=0v=0. (3.24)

Let I : V — V' be the canonical injection. Since V is compactly embedded in L?(Q;), we
have that the operator J: V — V' defined by J(v) = (I(v),0) is also compact. By (3.22) and
(3.24) and T satisfies the property of J, we obtain that T': V — V' is an isomorphism.
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By the conditions (3.2), (3.23), (3.24) and Theorem 10.1.2 of [1], one can get that there
exists hg € (0, 1], such that the following inequality is satisfied

A (u;
sup Aluiv,2) (3.25)
sevi |12ll0
for some constant «; independent of h (h < hg).
We define the Galerkin projection with respect to A'(u;-,-), Pr: V =V}
A'(u; Ppu, z) = A'(uyv,2), YV z €V
Then the operator P} satisfies
lv = Prvllipa < C ing lv —wvpllipa <Ch?, 2<p<oo, 0<o<Ll (3.26)
VR EVR
We define the set
By 2 {v eV | llv— } (3.27)

Lemma 3.6. uflv € V3, is a solution of (3.15) if and only if the following equation
Ay (W™ uN —ul v) = R uN,v), YwveV,

holds, where

R(u™;uN, v
2

é/m(/ol {aT(x w ) V) w}a—t)dt)(dhfv)?dx
+2/(/01 [g‘;’(x w) )Vdfyvu}a ft)dt)thdx

N
@ O‘ 0 ao Ny 0w Ov en . nmd | nml N
// / (x,wy,) 50" 50 2 ——sin sin —} (1- t)dt) (dy, )*deo’de

QL ~—

« «

aao Ny OdY Ov N e, om0 | nrb N oo
+2// / (, w] ) 56 2 smT}(l—t)dt)dthdH,

g o N _ N N _,Ny JN _, N _ N
with wy = u” +t(uy, —u), d =up, —u'™.

Proof. Let n(t) £ An(w);w,v). Then by

1
n(1) = 0)+7/0)+ [ )1~ )
An (N uN,v) = Ax(ul ;ud v) = F(v), YveV,

we can get the desired result. O

Let
My 2 {o e Vi | olloeg, < 1+ 0¥l }- (3.28)

Then following [14] and [16], we have
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Lemma 3.7. There exists a positive constant C' independent of h, such that

[R@™50,2)] < C(Ju = vl o, + 0™ = vl )I2]

1,945 YVveMy, VzelV,.
We also have the following result
Lemma 3.8. Let By and M}, be defined by (3.27) and (3.28), respectively. Then By C My,.

Proof. For any v € By, we only need to show that v € Mj,.

[0l 00,00 < llu™ = 0ll1,00,0; + [[™]]1,00,9: (3.29a)
[ = vll1,00,0, < ™ = Put™|l1,00,0, + [ Phu® = 0l|1,00,9, (3.29Db)
[ = P 1,000, < [0 = T |[100,0, + [Mhu™ = P |1,00,0,- (3.29¢)

Since J}, is regular and quasi-uniform, referring to [17], we obtain the following inverse inequality

1 1
oo, < Clog3 ) Wi ¥ w e Vi (3.30)

Combining the above inequalities with the definition of B, and (3.26), we obtain
[u® = vl 000, < 1.
By the definition of My, we get the desired result. |

Theorem 3.2. Assume u € V. N WH2+e(Q,) be the solution of (1.1), with e >0, k > 2. And
we also assume that ulr, € H*=Y2(T'R,) and u satisfies (3.24). With sufficiently small h, the
finite element equation (3.15) has the approximate solution uhN € Vi, such that

(N+Dm

o ]. RO o
o=l <O + e ()7 Tl (3:31)
Proof. Firstly, for any v’ € V| from (3.20), we have
ID(u™N;uN,v) — Dy (uN;u?, v)|
Ro\ S50 X nm\ 2\ 2 Y nmy\2\ 3 3
<o(F) " L2 (e () el 3 (e () ]
n=N+1 n=N+1

(N+1)w _ +oo

< () [ (0 () ] [ 3 (1 () ) )’

C (RoM

<t =) ey e, 0

Then by (3.11), we have
AN uN v)=DWN;ul, v)—l—ﬁ(uN; uN,v) = F(U)—i—ﬁ(uN;uN, v)—ﬁN(uN;uN,v).

Let n(t) = A(u + t(u™N — u),v). We have

1
/ A(u 4+t —u);ul¥ —u,v)dt = AN ;u™,v) — A(u; u,v).
0
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From (3.2), (3.23), (3.24) and [1], we obtain

1 1
l[u— UNHl,m < Csup (m / Al(u+t(u® —u);u® —u, U)dt)
veV 1o Jo

|D(u™;u, v) — Dy (u;u, v)|

<C
[olre.
C RO (Ntl)-rr
<o (®) T Py, (3.52)

We denote a nonlinear mapping ¢ : V3, — Vj,, which satisfies that for any given v € Vj,, ¢(v) is
the unique solution of

A'(u, 9(v),2z) = A'(u,u, 2) — R(u,v,2), ¥V 2 € Vj. (3.33)

Therefore, we have
Al(u, ¢(v) = ¢(vn), 2) = R(u,vn, 2) — R(u,v, 2).

Combining the above equation with (3.25), we obtain the operator ¢ is continuous, i.e.,

lim ¢(v,) = ¢(v).

Vy, —V

Next, we assume that v € By, then by Lemma 3.8, we have that v € M},. By the definition
of Py, equation (3.33) can be rewritten as

AW, p(v) — PoulN,2) = —R(uN,v,2), ¥V 2 € V.
Then, from (3.25), Lemma 3.6 and Lemma 3.7, we have

A" (u, $(v) — Prul, 2)]
1,Q;

[¢(v) — PhUNHLm < C sup
1% ||Z|

< (I = vl g, + u™ = vl1g,)

o, TP —oli g, + u® = Pyu™ |10, + ||PhUN—U||1,m) < Ch?.

< C(||uN—PhuN|

This implies that ¢ : B, — Bp. And since ¢ is also continuous, following from Brouwer’s fixed
theorem, one can obtain that there exists u € Vj, such that ¢(u)Y) = uY. From Lemma 3.6,
we deduce that u} is the solution of (3.15). What’s more, by (3.26) and the fact ulY € By, we
obtain

[u® = up [, < lu” = Pou® e, + [|Pau® —up|

Lo, <Ch°, 0<o<l. (3.34)
Combining (3.32) with (3.34), one can obtain

lu —up 10, < llu = u™ 0, + 0™ —uil 10,
1 RO (N+D)~
( [e3

< C(W T lulli—1.r, +h0)~

This completes the proof. O

Remark 3.3. The above conclusions are obtained for the unbounded domain with a concave
angle. Without any difficulty we can obtain corresponding error analysis for the bounded
domain problem. Therefore, we have the following results.
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Theorem 3.3. If the assumptions of Theorem 3.2 are satisfied, then with sufficiently small h,
the finite element equation (3.15) has the approximate solution uhN € Vy, such that

R (N+L)=

. 1 g
u—up 10 < C|h7 + W(R—O) H“kal/z,FRO] (3.35)

4. Numerical Examples

Since the problems discussed in the bounded or unbounded domains possess similar con-
vergence results, we only need to give some examples for unbounded domains to confirm our
theoretical results. In the following, we choose the finite element space as given in (3.14). For
simplicity, we let

a
Ar = pg Al = YL eo(h, N) = ||ju — UhNHL2(Q%), eoo(h, N) = |ju — UhN”LOO(Q%).

Example 4.1. We take Q° = {(z,y) | 2,y € R, r = /2> +y?> > 1.5} and its boundary
90 = IoUTl'g UTR, with Tg = {(r,0) | r > 1.5}, I'y = {(r,F) | r > 1.5} and ' =
{(3,0) | 0 <6 < I} We show our numerical results for problem (1.1), with

9—r24+ L, 15<r<3
a(z,u) = 1 Tt e == (4.1)
a2 7”>37
9—r2, 15<r<3
= ’ ~ =Y 4.2
f(@) {0, r> 3. (4.2)

The numerical results are given in Table 4.1.

Example 4.2. Similar with Example 4.1, a(z, u) is replaced by

9—r24+ L 15<r<3,
a(z,u) = 1 Vi-u? T (4.3)
ﬁ’ r> 3.

The numerical results are given in Table 4.2.
Notice that, for Examples 4.1 and 4.2, we use N = 0 to get the approximation results and
the exact ‘v’ is solved with N =0 and m = 64, M = 257.

Table 4.1: The errors with N = 0 for Example 4.1.

M eo(h, N) ratio €oo(h, N) ratio
9 | 4.3198E-01 — 1.6711E-01 —
17 | 1.5342E-01 | 2.8157 | 6.3018E-02 | 2.6519
33 | 5.4614E-02 | 2.8091 | 2.4175E-02 | 2.6067
65 | 1.6398E-02 | 3.3306 | 7.5890E-03 | 3.1856

Sl 3

Table 4.2: The errors with N = 0 for Example 4.2.

M eo(h, N) ratio €oo(hy N) ratio

9 | 2.3333E-01 - 8.7970E-02 -
17 | 7.8699E-02 | 2.9649 | 3.0874E-02 | 2.8494
33 | 2.9048E-02 | 2.7092 | 1.2144E-02 | 2.5423
65 | 1.1956E-02 | 2.4296 | 5.3168E-03 | 2.2841

Sloo| el 3
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Fig. 4.2. The errors on the artificial boundary with different mesh sizes.

Left: Example 4.3 with
N =100. Right: Example 4.4 with N = 5.

Example 4.3. We take Q° = {(z,y) | z,y € R,r = /22 +y?> > 1.5} and its boundary
00 =ToUlaUl'g, withTo = {(r,0) | r > 1.5}, T = {(r,27) | 7 > 1.5} and 'g = {(3,0) | 0 <
6 < 2m}. We show our numerical results for problem (1.1), with

9—r24+ L. 15<r<3,
a(x,w{ A (4.4)
1+u27 )

fo) = { 72(1 + tan? (%)) (9;12 tan (%) + %) 15<r<3,

(4.5)
0, r> 3.

The exact solution of Example 4.3 is u(x) = tan(y/r?). The numerical results are given in Fig.
4.2, Fig. 4.3 and Table 4.3.

Example 4.4. We take Q° = {(z,y)

| 2,y € R,r = /22 +y? > 15} and its boundary
90 = ToUTl, UTg, with Ty = {(r,0) | r

> 15}, Tq = {(r,27) | r > 15} and T'p =
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Table 4.3: The errors with N = 100 for Example 4.3.

m | M eo(h,N) ratio eco(h, N) ratio
2 9 2.3042E-01 — 1.2804E-01 —
4 17 | 5.8681E-02 | 3.9275 | 3.7770E-02 | 3.3902
8 33 | 1.6166E-02 | 3.6299 | 1.1791E-02 | 3.2034
16 | 65 | 4.6622E-03 | 3.4675 | 3.6876E-03 | 3.1974
32 | 129 | 1.1925E-03 | 3.9095 | 1.0023E-03 | 3.6793

Table 4.4: The errors with N = 5 for Example 4.4.

m | M eo(h, N) ratio €oo(hy, N) ratio
2 9 3.9146E-01 — 1.3430E-01 —
4 17 | 9.9956E-02 | 3.9164 | 3.9109E-02 | 3.4341
8 33 | 2.6848E-02 | 3.7230 | 1.2063E-02 | 3.2420
16
32

65 | 7.4989E-03 | 3.5803 | 3.7906E-03 | 3.1824
129 | 1.8592E-03 | 4.0333 | 1.0416E-03 | 3.6391

0016 - - - - T 00274 T T u
00 [o]o)
o 5 Q- -N=0 O -~ mesh=8x 33
0014 e} o} —+ -N=5 0.0272 ]
—+—N=10
5 . ° o N=20 0.027
0.012 5 N=100 %0 000 o
= 0.0268
o o
= 5
5 oo 5 5 z 0.0266
< 8
E 5 00264
& 0008 3
£ 5 o g 00262
2 0.006 = o0
0.004 o} o 0.0258
0.0256
0.002
0.0254
[}
1 2 3 4 5 6 7 0 5 10 15 20

6 Truncation Terms N

Fig. 4.3. Absolute errors and L2 (%) errors against N for Examples 4.3 and 4.4, respectively. Left:
Example 4.3: the errors on the artificial boundary with different N. Here we let (m, M) = (8,33).
Right: Example 4.4: L?*(€;) errors for u with different N.

{(4,6) | 0 <6 < 2m}. We present our numerical results for problem (1.1), with

16—+ ==, 15<r<4,
a(z,u) = 1 e (4.6)
ﬁ, r> 4,
16—r2 _: x 2x x
T sin(%) — Fcos(%), 1.5<r <4,
— T T T T 47
/(@) { 0, r>4 (47)

The exact solution of Example 4.4 is u(z) = sin(x/r?). The numerical results are given in Fig.
4.2, Fig. 4.3 and Table 4.4.

From the numerical results, one obtains that the numerical errors can be affected by the
order of artificial boundary condition, the mesh of the domain and the location of the artificial
boundary. And they can be reduced by increasing the order of the artificial boundary condition
and refining the mesh. When a finer mesh cannot produce a much more accurate numerical
solution, the errors originated from the series truncating is dominating. The numerical results
are in agreement with the error analysis we obtain and show the efficiency of the coupling
method.
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