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Abstract

Local absorbing boundary conditions (LABCs) for nonlinear Schrödinger equations

have been constructed in papers [PRE 78(2008) 026709; and PRE 79 (2009) 046711] using

the so-called unified approach. In this paper, we present stability analysis for the reduced

problem with LABCs on the bounded computational domain by the energy estimate, and

discuss a class of modified versions of LABCs. To prove the stability analysis of the re-

duced problem, we turn to the technique of some auxiliary variables which reduces the

higher-order derivatives in LABCs into a family of equations with lower-order derivatives.

Furthermore, we extend the strategy to the stability analysis of two-dimensional problems

by carefully dealing with the LABCs at corners. Numerical examples are given to demon-

strate the effectiveness of our boundary conditions and validate the theoretical analysis.

Mathematics subject classification: 65M12, 65M06, 65M15.

Key words: Nonlinear Schrödinger equations, Energy estimates, Absorbing boundary

conditions.

1. Introduction

In this paper we consider numerical solutions of nonlinear Schrödinger (NLS) equations for

wave function ψ(x, t), given by

i∂tψ(x, t) = −△ψ(x, t) + f(|ψ|, x, t)ψ(x, t), x ∈ R
d, t > 0, (1.1)

with d = 1, 2. The nonlinear Schrödinger equation has been widely studied in fluid mechanics,

nonlinear optics, atomic and molecular physics, for which, the nonlinear term f(|ψ|, x, t) could
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have different forms depending on practical applications [1–4]. For example, in fluid mechanics

and optics, it usually appears as a cubic nonlinear Schrödinger (NLS) equation. In Bose-

Einstein condensation [5], Eq. (1.1) is known as the Gross-Pitaevskii equation, where f(|ψ|, x, t)
is composed of a nonlinear potential and a harmonic trap potential. Recent interest of this

class of Schrödinger equations also includes the time-dependent density functional theory [6] to

investigate quantum many-body systems, for which the potential comes from the external field

and the internal Coulomb interactions.

The wave function in the NLS equation is defined on an infinite domain. The design of

suitable boundary conditions is essential for numerical computations on an interested truncated

region, which is the main concern of the present work. Historically, the so-called absorbing (or

artificial) boundary condition (ABC) has been widely studied for various types of linear PDEs

for which the classical techniques such as the Fourier (Laplace) transform and the spherical

harmonics expansion, are usually applicable (see recent reviews [7–9]). However, it is notoriously

hard for treating nonlinear equations due to the lack of general tools, presenting an urgent

requirement for people working on this field to develop new techniques and methodologies.

Some useful methods have been developed for designing ABCs of NLS equations. A class

of these methods are by considering the physical material near the boundary as an artificial

potential which absorbs outgoing waves. One technique is the perfectly matched layer (PML)

[10–12], which had been applied to numerically solve NLS equations [13,14]. Another material-

based method [15] is to add a negative imaginary potential as absorbing potential to the model

equation, which has been often used in practical simulations.

Mathematically, there are two types of ABCs, say, nonlocal and local ABCs, which have been

developed to treat both linear and nonlinear Schrödinger equations. For linear equations, the

nonlocal condition, also called the transparent condition or DtN map, is exact and of integral

form in time, and has been studied from different aspects such as analysis of discretization

schemes [16], fast evaluation of the integral [17] and extension to multi-dimensions [18, 19].

The exact ABCs for NLS equations are only available for some very special cases, limited to

one-dimensional version. A typical example is the integrable cubic NLS equation, which can be

solved by the inverse scattering method [20]. Also, if the potential f(|ψ|, x, t) is independent

of the wave function and periodic outside the computational domain, efficient methods were

developed in recent papers to construct exact ABCs (see, for example, [21, 22] and reference

therein). For a general potential, it is well-known that one could not solve out an explicit

representation of ABCs, since nonlinear interaction and the wave-potential interaction are too

complex to clearly understand, and thus some simplification has to be applied. Under the

assumption that the potential is slowly oscillatory and the density wave is of high-frequency

propagation, a general approach [23–25] has been developed by extending the result of linear

versions, and tested for many different potentials.

Local ABCs (LABCs) are usually constructed by extending the classical Engquist-Majda

method [26] to factorize the Schrödinger operator in the linear equation, and to approximate

the outgoing component by the Taylor or Padé expansions. The obtained differential equations

can be naturally coupled with the nonlinear term by the time-splitting technique [28,29], which

results in ABCs in discretization form. Recently, this approach was further developed into

a general principle, called the unified approach [30–32], by recombining the subproblems of

the time-splitting procedure into a continuous nonlinear differential equations as the effective

LABCs. With these LABCs, the problem on unbounded domain is reformulated into a reduced

problem on a bounded domain. To our knowledge, a rigorous mathematical analysis of the
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stability and accuracy of the reduced problem remains open, namely,

1. What is the approximate accuracy of the reduced problem with LABCs to the original

problem?

2. What is the stability of the reduced problem with LABCs in energy estimate?

The aim of this paper focuses on the second problem. We analyze the stability of the reduced

problems with the obtained LABCs in [30, 31], and systematically validate the performance of

boundary conditions by numerical examples with various nonlinear and complex potentials. By

introducing the auxiliary-variables, the obtained LABCs with higher-order mixed derivatives

are reduced into a family of equations with lower-order derivatives. Furthermore, the strategy is

extended to two-dimensional case by carefully dealing with the boundary condition at corners.

The initial-boundary-value (IBV) problems with LABCs proposed in [30, 31] are proven to be

theoretically stable in L2-norm. In addition, a variety of boundary conditions (2.11) is also

obtained by the unified approach, and have a better performance than the boundary conditions

in [30] by numerically comparing the L2-errors and normalized L2-norm. However, the stability

analysis of problems with these boundary conditions remains open.

The organization of this paper is as follows. In Section 2, we discuss the unified approach

for one-dimensional NLS equations. By turning to some auxiliary variables to avoid the mixed

partial derivatives in LABCs, the stability analysis of the reduced IBV problem is given. In

Section 3, the stability analysis is extended to two-dimensional cases, and the difficulty of

boundary conditions at corners is circumvented. Section 4 shows an efficient discretization

scheme and presents numerical examples to demonstrate the accuracy and effectiveness of the

obtained boundary conditions. We end the paper with the conclusion.

2. Boundary Conditions and Stability Analysis in 1D

In this section, we discuss the construction of the LABCs and the stability of resulted IBV

problems for one-dimensional NLS equations. The interior domain of computational domain is

defined by Ωi :=]xl, xr[. And Ω̄i denotes the closure of the set Ωi and the boundary denotes

Γ := {xl, xr}.

2.1. Unified approach: general principle

Before embarking on the design of LABCs, we briefly recall the philosophy of the unified

approach and rewrite equation (1.1) in the operator form

i∂tψ = Lψ +Nψ (2.1)

with Lψ := −∆ψ and Nψ := f(|ψ|, x, t)ψ. Over a time interval from t to t+ τ for small τ , in

analog to the Strang’s splitting method [34], the approximation

ψ(x, t+ τ) ≈ e−iτLe−iτNψ(x, t) (2.2)

is used. We replace the linear operator L by a one-directional approximation operator L(n)

(make the waves outgoing), then combine L(n) with the nonlinear term N . We restrict (2.2) to

artificial boundaries and obtain the following expression

i∂tψ(x, t) = L(n)ψ(x, t) +Nψ(x, t), (2.3)
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as the nonlinear absorbing boundary condition. The superscript n is related to the convergence

rate of the Padé expansion. How to obtain a good approximation L(n) plays an important role

in the quality of the ABCs.

2.2. Construction of nonlinear absorbing boundary conditions

To construct the approximation operator L(n), we first consider one-dimensional linear

Schrödinger equation

iψ(x, t) = −∂2xψ(x, t) = Lψ(x, t). (2.4)

Assume that the artificial boundaries are transparent to a plane wave in the form of ψ(x, t) =

exp[−i(ωt− ξx)], where ω is the frequency and ξ is the wave number. Substituting the plane

wave form into Eq. (2.4), one obtains the corresponding dispersion relation ξ2 = ω, and solves

it to yield

ξ = ±√
ω, (2.5)

where the plus and minus signs correspond to the right- and left-going waves, respectively.

Under the framework of Engquist and Majda’s approach [27], we expand Eq. (2.5) at point ω0

by a rational polynomial, to obtain

√
ω ≈ √

ω0 −
√
ω0

N
∑

m=1

bm (ω0 − ω)

ω0 − am (ω0 − ω)
, (2.6)

where

am = cos2
(

mπ

2N + 1

)

, bm =
2

2N + 1
sin2

(

mπ

2N + 1

)

, m = 1, · · · , N.

Substituting the Padé expansion (2.6) into (2.5) with k0 =
√
ω0, we have

ξ = ±k0
(

1−
N
∑

m=1

bm(k
2
0 − ω)

k20 − am(k20 − ω)

)

. (2.7)

The approximation (2.7) is called the paraxial approximation in literature. Taking N = 1, and

applying the dual relation ξ ⇔ −i∂x and ω ⇔ i∂t, we have the third-order ABCs

−ψxt ± 3ik0ψt + 3ik20ψx ± k30ψ = 0, (2.8)

which reproduce the Kuska’s boundary conditions [33]. The “third-order” represents the con-

vergence rate of the Padé approximation. We rewrite Eq. (2.8) in the form of

i∂tψ = − (i∂x ± 3k0)
−1 (3ik20∂x ± k30

)

ψ := L(3)ψ. (2.9)

Comparing linear Schrödinger equation (2.4) with approximated equations (2.9), we can con-

sider L(3) as an approximation of L

L ≈ L(3) := − (i∂x ± 3k0)
−1 (3ik20∂x ± k30

)

. (2.10)

Substituting (2.10) into (2.3) leads us to the nonlinear LABCs for the NLS equation,

−ψxt ± 3ik0ψt + 3ik20ψx ± k30ψ = f(|ψ|, x, t) (iψx ± 3k0ψ) + if(|ψ|, x, t)xψ. (2.11)
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The boundary conditions obtained in [30, 31] are

−ψxt ± 3ik0ψt + 3ik20ψx ± k30ψ = f(|ψ|, x, t) (iψx ± 3k0ψ) . (2.12)

One can see that there is one more term if(|ψ|, x, t)xψ in (2.11) than (2.12). We remark

that if the amplitudes of f(|ψ|, x, t)xψ is small enough, the two boundary conditions have tiny

difference, and can be considered as a variety of each other. In fact, the boundary condition

(2.12) is derived under an assumption that the potential is slowly oscillatory or the waves are

with high frequency, by which the reflection waves are weak, and there are only minor reflection

waves in comparison to the outgoing waves. Accordingly, the nonlinear term and potential can

be approximately taken as constants over small time step, thus f(|ψ|, x, t)xψ vanishes over each

time step. From this viewpoint, it is vivid to call boundary conditions (2.12) the linearized

LABCs although they are indeed nonlinear in the form. To differ from boundary conditions

(2.12), we will keep the notation of linearized LABCs if it does not cause any confusion. For

brevity, we express LABCs (2.11) and linearized LABCs (2.12):

LABC± (x, t, ψ(x, t)) = 0,

LLABC± (x, t, ψ(x, t)) = 0,

where LABC− (or LLABC−) and LABC+ ( (or LLABC+)) represent the left and right bound-

ary conditions, respectively. In this paper, we consider the stability of the reduced problems

obtained in [30, 31], namely,















i∂tψ = −∂2xψ + f(|ψ|, x, t)ψ, x ∈ Ωi,

LLABC±(x, t, ψ(x, t)) = 0, x ∈ Γ,

ψ(x, 0) = ψ0(x), x ∈ Ωi.

(2.13)

It should be pointed out that the physical parameter k0 in boundary conditions (2.11) and

(2.12) is essential for the accuracy of approximating the dispersion relation (2.5). The choice of

parameter k0 =
√
w0 is related to the frequency of wave impinging on the artificial boundaries,

and the Padé approximation to the dispersion relation (2.6) at the expansion point w0 would

be more accurate when w0 is closer to the real frequency w. Furthermore, the relation between

group velocity C and wavenumber k is given by C = ∂ω
∂k

= 2k. Thus the parameters k0 is a

finite positive number since the group velocity of wave is considered to be finite in this paper.

To be more accurate, the parameters should be determined adaptively [29]; see Appendix for a

detailed description.

2.3. Stability analysis for one dimensional problem

In order to prove the stability of the reduced problem (2.13), we reconstruct the derivation of

boundary conditions (2.12). This proposal will give some hints how to circumvent the difficulty

of mixed derivatives. Under an assumption that the potential is slowly oscillatory, the nonlinear

term and potential can be approximately taken as constants over small time step. Thus the

dispersion relation of model equation is given by ξ2 = ω − f and the one-way relations are

ξ = ±
√

ω − f. (2.14)
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Denoting z = ω − f and using the expansion (2.6) for N = 1 at point z0, we have

ξ = ±
√

ω − f ≈ ±√
z0
z0 + 3z

3z0 + z
= ±√

z0

(

3− 8z0
3z0 + ω − f

)

. (2.15)

The formulas can be rearranged into

ξ
(

3k20 + ω − f
)

= ±k0
(

k20 + 3ω − 3f
)

(2.16)

with k0 =
√
z0. Multiplying both side of (2.16) by ψ and applying the duality ξ ⇔ −i∂x and ω ⇔

i∂t, the so-calledLLABCs (2.12) are achieved. To circumvent the mixed derivatives, we multiply

both sides of (2.15) by ψ, introduce the auxiliary variables

φl =
1

3k20 + ω − f
ψ,

and arrive at
{

ξψ = ±k0(3ψ − 8k20φl)

(3k20 + ω − f)φl = ψ,
(2.17)

with l = 1, 2, where l = 1 represents the auxiliary variable at the left boundary, and l = 2

represents at the right boundary. By applying the dual relation ξ ⇔ −i∂x and ω ⇔ i∂t to

(2.17), the boundary conditions (2.12) are equivalently rewritten as






i∂xψ ± k0
(

3ψ − 8k20φl(t)
)

= 0,

3k20φl(t) + i∂tφl(t)− φl(t)f(|ψ|, x, t) = ψ.
(2.18)

Thus the reduced problem (2.13) is equivalent to































































i∂tψ = −∂2xψ + f(|ψ|, x, t)ψ, xl < x < xr, 0 < t ≤ T,

i∂xψ(xl, t)− k0
(

3ψ(xl, t)− 8k20φ1(t)
)

= 0,

i∂xψ(xr , t) + k0
(

3ψ(xr, t)− 8k20φ2(t)
)

= 0,

3k20φ1(t) + i∂tφ1(t)− f(|ψ|, xl, t)φ1(t) = ψ(xl, t),

3k20φ2(t) + i∂tφ2(t)− f(|ψ|, xr, t)φ2(t) = ψ(xr , t),

ψ(x, 0) = ψ0(x), xl ≤ x ≤ xr; φ1(0) = 0, φ2(0) = 0.

(2.19)

Theorem 2.1. Assume that f(|ψ|, x, t) is a real function. Let ψ(x, t) be the solution of (2.19).

We have

||ψ||2Ωi
+ 8k30

(

|φ1(t)|2 + |φ2(t)|2
)

≤ e
8k2

0t

3 ||ψ0||2Ωi
, 0 < t ≤ T. (2.20)

Proof. Multiplying the first equation in (2.19) by ψ(x, t), integrating by parts over [xl, xr],

taking the imaginary part and noting that f(|ψ|, x, t) is real, we have

1

2

d

dt
||ψ||2Ωi

= Im
{

ψ(xl, t)∂xψ(xl, t)− ψ(xr , t)∂xψ(xr, t)
}

. (2.21)

Inserting the second and third equations of (2.19) into (2.21), we get

1

2

d

dt
||ψ||2Ωi

= −3k0

(

|ψ(xl, t)|2 + |ψ(xr , t)|2
)

+ 8k30Re
{

ψ(xl, t)φ1(t) + ψ(xr , t)φ2(t)
}

. (2.22)
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Multiplying the forth equation of (2.19) by φm,1(t), leads to

3k20 |φ1(t)|2 + iφ1(t)∂tφ1(t)− f(|ψ|, xl, t) |φ1(t)|2 = φ1(t)ψ(xl, t).

Using Im{f(|ψ|, x, t)} = 0 and taking the imaginary part, and multiplying the resulting by 8k30,

we obtain

4k30
d

dt
|φ1(t)|2 = 8k30Im

{

ψ(xl, t)φ1(t)
}

. (2.23)

Similarly, for the fifth equation of (2.19), we can obtain

4k30
d

dt
|φ2(t)|2 = 8k30Im

{

ψ(xr , t)φ2(t)
}

. (2.24)

Adding (2.22), (2.23) and (2.24) together, we get

1

2

d

dt

{

||ψ||2Ωi
+ 8k30

(

|φ1(t)|2 + |φ2(t)|2
)}

= −3k0

(

|ψ(xl, t)|2 + |ψ(xr , t)|2
)

+ 8k30Re
{

ψ(xl, t)φ1(t) + ψ(xr , t)φ2(t)
}

+8k30Im
{

ψ(xl, t)φ1(t) + ψ(xr , t)φ2(t)
}

. (2.25)

Using |Re(Z)|+ |Im(Z)| ≤
√
2 |Z| and the ǫ inequality, i.e. ab ≤ ǫa2 + b2

4ǫ , we have

A ≡ 8k30Re
{

ψ(xl, t)φ1(t) + ψ(xr , t)φ2(t)
}

+ 8k30Im
{

ψ(xl, t)φ1(t) + ψ(xr , t)φm,2(t)
}

≤ 8
√
2k30

(
∣

∣ψ(xl, t)φ1(t)
∣

∣+
∣

∣ψ(xr, t)φ2(t)
∣

∣

)

≤ ǫ
(

|ψ(xl, t)|2 + |ψ(xr , t)|2
)

+
32k60
ǫ

(

∣

∣φ1(t)
∣

∣

2
+
∣

∣φ2(t)
∣

∣

2
)

. (2.26)

Taking ǫ = 3k0, we arrive at

A ≤ 3k0

(

|ψ(xl, t)|2 + |ψ(xr , t)|2
)

+
32k50
3

(

|φ1(t)|2 + |φ2(t)|2
)

.

Inserting above inequality into (2.25), we obtain

d

dt

{

||ψ||2Ωi
+ 8k30

(

|φ1(t)|2 + |φ2(t)|2
)}

≤ 8k20
3

· 8k30
(

|φ1(t)|2 + |φ2(t)|2
)

.

Gronwall inequality yields (2.20). This completes the proof. �

In Theorem 2.1, the parameter k0 is considered as a finite positive constant. In fact, the

parameter k0 is often chosen such that they are close to the group velocity of the wave impinging

on the artificial boundaries, the parameter k0 will change with time t. One can see the adaptive

selection of the parameter k0 by formula (A.2) in Appendix. When k0(t) 6= 0 for t ∈ [0, T ), by

changing Eqs. (2.23) and (2.24), we will have a rough result (instead of Eq. (2.20)) as

||ψ||2Ωi
+
(

|φ1(t)|2 + |φ2(t)|2
)

≤ e
∫

t

0

8(k3
0(τ)+1)2

3k0(τ)
dτ ||ψ0||2Ωi

, 0 < t ≤ T. (2.27)

Since k0(t) depends on the finite velocities of wave impinging on the artificial boundary, we can

take the maximum of k0(t) by k
m
0 = max

0<t≤T
{k0(t)} and have:

||ψ||2Ωi
+
(

|φ1(t)|2 + |φ2(t)|2
)

≤ e
8((km

0 )3+1)2

3km
0

t||ψ0||2Ωi
, 0 < t ≤ T. (2.28)
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We end this section with a remark that when the adaptive selection of k0 is applied, the k0
can be chosen zero when the wave has not touched the artificial boundaries. In this situation,

the boundary conditions are equivalent to a zero boundary condition, hence we can take any

finite positive k0 with the same effects. The same remark is suitable for Theorem 3.1 for the

case of η0 = 0 and ξ0 = 0.

x

y Ωi Ωe

Γn

Γs

Γw Γe

CNECNW

CSW CSE

Fig. 2.1. Settings of unbounded problems.

3. Boundary Conditions and Stability Analysis in 2D

We have obtained the stability of the reduced IBV problem for 1D spatial domain, which

motivates us to apply the spirit to 2D case. As showed in Fig. 2.1, the artificial boundaries are

defined by

Γe = {(x, y)|x = L, 0 ≤ y ≤ L}, Γw = {(x, y)|x = 0, 0 ≤ y ≤ L},

Γn = {(x, y)|0 ≤ x ≤ L, y = L}, Γs = {(x, y)|0 ≤ x ≤ L, y = 0},

which divide the unbounded domain R
2 into two parts: the bounded (interior) domain Ωi and

unbounded (exterior) domain Ωe, namely,

Ωi = {(x, y)|0 < x < L, 0 < y < L}, and Ωe = R
2 \ Ω̄i.

Zhang et al. [31] constructed the corresponding LABCs for two-dimensional NLS equations, and

proposed the treatment of boundary conditions at corners. In this paper, we use the energy

estimate to prove the stability of those boundary conditions. For a general initial compactly

supported wave package, the wave has different group velocities, and will propagate along the

same directions, and then impinges on the artificial boundaries. To avoid complicated notation-

s (i.e., auxiliary variables), we assume that the solutions propagate into the northern-eastern

corner CNE . Thus we set LABCs on boundaries Γn, Γe and corner CNE , and homogeneous

Dirichlet boundary conditions on other parts of boundaries. Now we recall the boundary con-

ditions of [31]: BC on Γe

−i3ξ20∂xψ + ∂x∂tψ − i∂x∂
2
yψ = ξ30ψ + 3iξ0∂tψ + 3ξ0∂

2
yψ − f(|ψ|, x, t)(i∂xψ + 3ξ0ψ); (3.1)

BC on Γn

−i3η20∂yψ + ∂y∂tψ − i∂y∂
2
xψ = η30ψ + 3iη0∂tψ + 3η0∂

2
xψ − f(|ψ|, x, t)(i∂yψ + 3η0ψ); (3.2)
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BC at CNE

3ξ0∂y∂tψ + 3η0∂x∂tψ +
(

3ξ20 + 3η20 − f(|ψ|, x, t)
)

∂x∂yψ

− iξ0

(

ξ20 + 9η20 − 3f(|ψ|, x, t)
)

∂yψ + i∂x∂y∂tψ − 9iξ0η0∂tψ

− iη0

(

η20 + 9ξ20 − 3f(|ψ|, x, t)
)

∂xψ + 3ξ0η0

(

3f(|ψ|, x, t)− ξ20 − η20

)

ψ = 0, (3.3)

where η0 is the wave-number along x-direction and ξ0 along y-direction. The parameters η0
and ξ0 are the expansion points of Padé approximation to the dispersion relation.

The model equation and initial value on Ωi are rewritten by

i∂tψ = −△ψ + f(|ψ|, x, t)ψ, (x, y) ∈ Ωi (3.4)

ψ(x, y, 0) = ψ0, (x, y) ∈ Ωi. (3.5)

For the reduced problem (3.1)-(3.5), the essential difficulty arises from the equation at corner

CNE , which can be considered as a bridge to connect ABCs between Γn and Γe. Similar to the

aforementioned 1D case, auxiliary variables are introduced to reduce higher-order derivatives

into a system of equations with lower-order derivatives. For BCs on Γe and Γn, namely, (3.1)

and (3.2), the equivalent forms are respectively given by

2ξ30φ1(y, t) = −i∂xψ + 3ξ0ψ, (3.6)

3ξ20φ1(y, t) + i∂tφ1(y, t) + ∂2yφ1(y, t)− f(|ψ|, x, t)φ1(y, t) = 4ψ, (3.7)

2η30φ2(x, t) = −i∂yψ + 3η0ψ, (3.8)

3η20φ2(x, t) + i∂tφ2(x, t) + ∂2xφ2(x, t)− f(|ψ|, x, t)φ2(x, t) = 4ψ. (3.9)

For BC at corner CNE (3.3), we define auxiliary variables Φ1 and Φ2, and write them in

equivalent forms of form is

Φ1(t) = i∂yφ1 + 3η0φ1, (3.10)

2i∂tΦ1 = −3(η20 + ξ20)Φ1 + 8η30(φ1 + φ2) + 2f(|ψ|, x, t)Φ1, (3.11)

or,

Φ2(t) = i∂xφ2 + 3ξ0φ2, (3.12)

2i∂tΦ2 = −3(η20 + ξ20)Φ2 + 8ξ30(φ1 + φ2) + 2f(|ψ|, x, t)Φ2. (3.13)

Since initial data ψ0 is compactly supported, e.g., ψ0 = 0 on the artificial boundaries, thus the

initial values of those auxiliary variables are zero from the definitions of (3.6), (3.8), (3.10) and

(3.12). Now we have the following theorem for the IBV problem (3.4)-(3.13).

Theorem 3.1. Assume that f(|ψ|, x, t) is a real function. Let ψ(x, t) be the solution of the

reduced problem (3.4)-(3.13) with the Dirichlet boundary conditions on Γw and Γe, and denote

c = max{8ξ50/3, 8η50/3, 2ξ30/η0, 2η30/ξ0}. We have

||ψ||2Ωi
+

1

2

(

ξ30 ||φ1||2[0,L] + η30 ||φ2||2[0,L]
)

+
ξ30
8η30

|Φ1|2 +
η30
8ξ30

|Φ2|2

≤ e2ct||ψ0|2Ωi
, 0 < t ≤ T. (3.14)
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Proof. Multiplying (3.4) by ψ, integrating by parts on Ωi, and taking the imaginary part,

we have

1

2

d

dt
||ψ||2Ωi

= −Im

{

∫ L

0

ψ(L, y, t)∂xψ(L, y, t)dy +

∫ L

0

ψ(x, L, t)∂yψ(x, L, t)dx

}

. (3.15)

Plugging (3.6) and (3.8) into (3.15), we obtain

1

2

d

dt
||ψ||2Ωi

= −3
(

ξ0||ψ(L, y, t)||2[0,L] + η0||ψ(x, L, t)||2[0,L]
)

+2Re

{

ξ30

∫ L

0

ψφ1dy + η30

∫ L

0

ψφ2dx

}

. (3.16)

Multiplying (3.7) by φ1(t), integrating by parts over [0, L] and taking the imaginary part, we

have
ξ30
4

d

dt
||φ1||2[0,L] = −ξ

3
0

2
Im
{

φ1(L,L, t)∂yφ1(L,L, t)
}

+ 2ξ30Im

∫ L

0

ψφ1dy.

Noting that ∂yφ1 = −iΦ1(t) + 3iη0φ1 from (3.10), we have

ξ30
4

d

dt
||φ1||2[0,L] = −3ξ30η0

2
|φ1(L,L, t)|2 +

ξ30
2
Re
{

φ1(L,L, t)Φ1(t)
}

+ 2ξ30Im

∫ L

0

ψφ1dy. (3.17)

Similarly,

η30
4

d

dt
||φ2||2[0,L] = −3η30ξ0

2
|φ2(L,L, t)|2 +

η30
2
Re
{

φ2(L,L, t)Φ2(t)
}

+ 2η30Im

∫ L

0

ψφ2dx. (3.18)

Multiplying (3.11) by Φ1(t), (3.13) by Φ2(t), and taking the imaginary part, lead us to

ξ30
16η30

d

dt
|Φ1|2 =

ξ30
2
Im
{

(φ1(L,L, t) + φ2(L,L, t))Φ1(t)
}

, (3.19)

η30
16ξ30

d

dt
|Φ2|2 =

η30
2
Im
{

(φ1(L,L, t) + φ2(L,L, t))Φ2(t)
}

. (3.20)

Adding (3.16)-(3.20) together, we get

1

2

d

dt

{

||ψ||2Ωi
+

1

2

(

ξ30 ||φ1||2[0,L] + η30 ||φ2||2[0,L]
)

+
ξ30
8η30

|Φ1|2 +
η30
8ξ30

|Φ2|2
}

= −3

(

ξ0||ψ||2[0,L] + η0||ψ||2[0,L] +
ξ30η0
2

|φ1|2 +
η30ξ0
2

|φ2|2
)

(3.21)

+2Re

{

ξ30

∫ L

0

ψφ1 + η30

∫ L

0

ψφ2

}

+ 2Im

{

ξ30

∫ L

0

ψφ1 + η30

∫ L

0

ψφ2

}

+
1

2

(

Re
{

ξ30φ1Φ1 + η30φ2Φ2

}

+ Im
{

ξ30 (φ1 + φ2)Φ1 + η30 (φ1 + φ2)Φ2

}

)

.

Using |Re(Z)|+ |Im(Z)| ≤
√
2 |Z|, |Re(Z)| ≤ |Z|, |Im(Z)| ≤ |Z|, Hölder inequality and the



Stability Analysis for Nonlinear Schrödinger Equations with ABCs 11

ǫ inequality, we have

A ≡ 2Re

{

ξ30

∫ L

0

ψφ1 + η30

∫ L

0

ψφ2

}

+ 2Im

{

ξ30

∫ L

0

ψφ1 + η30

∫ L

0

ψφ2

}

+
1

2

(

Re
{

ξ30φ1Φ1 + η30φ2Φ2

}

+ Im
{

ξ30 (φ1 + φ2)Φ1 + η30 (φ1 + φ2)Φ2

}

)

≤ 2
√
2ξ30 ||ψ||[0,L]||φ1||[0,L] + 2

√
2η30 ||ψ||[0,L]||φ2||[0,L]

+

√
2

2
ξ30 |φ1||Φ1|+

√
2

2
η30 |φ2||Φ2|+ ξ30 |φ2||Φ1|+ η30 |φ1||Φ2|

≤ 3

(

ξ0||ψ||2[0,L] + η0||ψ||2[0,L] +
ξ30η0
2

|φ1|2 +
η30ξ0
2

|φ2|2
)

+
8

3
ξ50 ||φ1||2[0,L] +

8

3
η50 ||φ2||2[0,L] +

2ξ30
η0

|Φ1|2 +
2η30
ξ0

|Φ2|2

≤ 3

(

ξ0||ψ||2[0,L] + η0||ψ||2[0,L] +
ξ30η0
2

|φ1|2 +
η30ξ0
2

|φ2|2
)

+c
(

||φ1||2[0,L] + ||φ2||2[0,L] + |Φ1|2 + |Φ2|2
)

, (3.22)

where c = max{8ξ50/3, 8η50/3, 2ξ30/η0, 2η30/ξ0}. Inserting the inequality (3.22) into (3.22), we

obtain

d

dt

{

||ψ||2Ωi
+

1

2

(

ξ30 ||φ1||2[0,L] + η30 ||φ2||2[0,L]
)

+
ξ30
8η30

|Φ1|2 +
η30
8ξ30

|Φ2|2
}

≤ 2c
(

||φ1||2[0,L] + ||φ2||2[0,L] + |Φ1|2 + |Φ2|2
)

(3.23)

Applying Gronwall’s inequality to (3.23) leads us to (3.14). This completes the proof. �

Theorem 3.1 shows the stability in the presence of LABCs on Γe, Γn and corner CNE .

Similarly, the stability in the presence of LABCs on other boundaries and corners can be

straightforwardly achieved. It should be pointed out that the parameters ξ0 and η0 are con-

sidered as fixed positive finite constants in Theorem 3.1. In fact, the values of ξ0 and η0 are

often chosen such that they are close to the group velocity of the wave, hence the parameters

are finite and positive. If the weighted wave number selection approach (see (A.3)) is used to

adaptively choose the parameters ξ0 and η0. η0(x, t) and ξ0(y, t) will be not only functions

of time t, but also functions of variable x and y, respectively. In practical calculations, it is

expensive to compute η0(x, t) and ξ0(y, t) at every grid point. Alternatively, for any fixed time

t, we only compute η0(xi, t) (or ξ0(yj , t)) at one fixed grid point xi (or yj), then use η0(xi, t)

and ξ0(yj , t) as the values of other points on the same artificial boundary. Thus the parameters

ξ0 and η0 are only functions of time t in practical computations, for which, the stability can

also be achieved by changing a few terms in the proof.

4. Discretization and Numerical Examples

In this section, we present numerical discretizations of the IBV problem of one dimension

with boundary conditions LLABC or LABC. Extensions to two dimensional discretizations are
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straightforward. Let J and M be positive integers, h = (xr − xl)/J be the spatial step size,

and ∆t = T/M be the time step size. Let

tn = n∆t, xj = xl + jh, ψnj ∼ ψ(xj , tn), ψ
n+ 1

2

j =
ψn+1
j + ψnj

2
,

D2
xψ

n
j =

ψnj−1 − 2ψnj + ψnj+1

h2
, Dxψ

n
j =

ψnj+1 − ψnj−1

2h
, f(|ψn+1

j |) = f(|ψn+1
j |, xj , tn+1).

For the model equation, Crank-Nicolson-type finite difference scheme [35] is employed,

i
ψn+1
j − ψnj

∆t
+D2

x

ψn+1
j + ψnj

2
− f(|ψn+

1
2

j |)
ψn+1
j + ψnj

2
= 0.

This scheme is implicit, and an iterative strategy is performed by replacing f(|ψn+1
j |) with

f((|ψn+1
j )k|), where the superscript k represents the k-th iteration at each time step and the data

for the initial iteration step are given by (ψn+1
j )0 = ψnj . The stop criteria is max0≤j≤J |(ψn+1

j )k+1

−(ψn+1
j )k| ≤ ǫ := 10−12. We introduce two unknown ghost points x−1 and xJ+1, and denote

xs the grid points at the artificial boundaries with s = 0 or J . The LABCs are discretized by

(−Dx ± 3ik0)
ψn+1
s −ψns
∆t

+(3ik20Dx ± k30)ψ
n+ 1

2
s

=
[

f(|ψn+
1
2

s |)(iDx ± 3k0)+iDxf(|ψn+
1
2

s |)
]

ψ
n+ 1

2
s ,

where the plus sign in “ ± ” corresponds to the right boundary s = J and the minus sign

corresponds to the left boundary s = 0. The LLABCs are discretized by

(−Dx ± 3ik0)
ψn+1
s − ψns

∆t
+ (3ik20Dx ± k30)ψ

n+ 1
2

s = f(|ψn+
1
2

s |)(iDx ± 3k0)ψ
n+ 1

2
s .

Now numerical examples are given to demonstrate the performance and the numerical sta-

bility of LABC and LLABC. In examples 1, 2 and 3, we consider one-dimensional case by

investigating different nonlinearities. In example 4, we consider two-dimensional case by mod-

eling the expansion of a Bose-Einstein condensate composed of waves with different group

velocities.

Example 4.1. A focusing effect of the cubic nonlinearity is considered by taking f(|ψ|, x, t) =
−2|ψ|2. Its exact one-soliton solution has the following form

ψ(x, t) = A sech(Ax − 2ABt)eiBx+i(A
2−B2)t,

where A and B are real parameters: A represents the amplitude of the wavefield and B the

velocity of the soliton. In this example, we investigate the quantitative differences between

LABC and LLABC. In the calculation, we use the parameters A = 1, B = 2, [xl, xr] =

[−10, 10], k0 = 2.0, and final time T = 6.0. The wave propagates into the positive-direction

with speed B = 2, the boundary condition will have a good performance when the parameter k0
is very close to the speed. Here and below, we will choose k0 close to the speed of the wave. In

order to evaluate the approximate accuracy of the reduced problems with absorbing boundary

conditions, the normalized L2-error defined by

||ψnu − ψexa||2,[xl,xr]

||ψ0||2,[xl,xr]
,
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Fig. 4.1. log10(L2-errors) (panel A) and Normalized L2-norm (panel B).

Table 4.1: The L2-error and convergence order by using LABC and LLABC at T = 3.

∆x = 0.2 order ∆x = 0.1 order ∆x = 0.05 order

LABC 1.132e-1 – 2.694e-2 2.290 7.038e-3 1.936

LLABC 1.141e-1 – 2.917e-2 2.274 8.151e-3 1.840

is used to characterize the error between the exact solution ψexa and the numerical solution

ψnu of the reduced problem.

Panel A of Fig. 4.1 shows the log10(L2-errors) versus time t ≤ 6 with h = 0.1,∆t = 0.01

and their refined meshes. The L2-error computed by LABC is smaller than the one by LLABC
when t > 4. The long-time computation is showed in panel B of Fig. 4.1 with h = 0.05,∆t =

0.005, where the normalized L2-norm of numerical solution ψnu defined by
||ψnu||2,[xl,xr ]

||ψ0||2,[xl,xr ]
. We

terminates the calculation at t = 20. No energy growth is observed, which implies the stability of

our LABC and LLABC. Table 4.1 shows the time-dependent errors in L2-norm and convergence

order at T = 3 by taking ∆t = h2. The time-dependent error in L2-norm is defined by

1

M

M
∑

n=1

||ψnu(tn)− ψexa(tn)||2,[xl,xr].

From Fig. 4.1 and Table 4.1, both boundary conditions LABC and LLABC are stable, and

LABC has better performance than LLABC by comparing the errors in L2-norm.

Example 4.2. To model the expansion of a Bose-Einstein condensate composed of waves with

different group velocities, we take nonlinearity

f(|ψ|, x, t) = 2|ψ|2 + V (x),

and the Gaussian initial function ψ0 = e−0.1x2

, and the potential V (x) = e−0.5x2

. This repre-

sents a nonlinear wave for repulsive interaction. In the calculation, the parameters are taken

by k0 = 2, h = 10−2, ∆t = 2 × 10−3, T = 6, [xl, xr ] = [−15, 15]. Panels A and B of Fig. 4.2

plot numerical solutions |ψ| generated by LABC and LLABC at time t = 2, 4, 6. There is no

obvious reflected wave by the boundary conditions, which implies that both LABC and LLABC
perform well and are stable.

Example 4.3. The nonlinearity is taken by

f(|ψ|, x, t) = −2|ψ|4 − 2|ψ|2
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and initial value ψ0 = e10ix−x
2

. The parameters are taken by k0 = 10, h = 5 × 10−3,∆t =

5×10−4, [xl, xr] = [−5, 5], T = 2. Panels A and B of Fig. 4.4 show the evolutions of numerical

solutions respectively obtained by LABC and LLABC at time t = 0.2, 0.4, 0.6. Both LABC and

LLABC have a good performance and are stable.

Example 4.4. This is a two-dimensional example. The nonlinear term is taken by

f(|ψ|, x, y, t) = 2|ψ|2 + V (x, y)

with the potential V (x, y) = e−0.5(x−10)2−0.5(y−10)2 . The initial wave is given by overlapping
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two Gaussian pulses (see Fig. 4.3 for case T = 0)

ψ(x, y, 0) = e−0.1(x−8)2−0.1(y−8)2 + e−0.1(x−12)2−0.1(y−12)2 .

This nonlinear wave interacts repulsively and will impinge on all artificial boundaries and cor-

ners. In the calculation, we take L = 20, ∆x = ∆y = 0.05 and ∆t = 0.005, ξ0 = η0 = 2.0. Fig.

4.3 represents the evolution of the numerical solution at different snapshots (t = 1, 3, 4). One

can see that no obvious reflections appear near the boundaries and corners, which imply that

the boundary conditions are stable and work well.

5. Conclusions

The stability of the reduced problem with LABCs constructed by the unified approach for

nonlinear Schrödinger equations are studied in this paper. By introducing auxiliary variables

to reduce the boundary conditions with high-order mixed derivatives into a family of equations

with lower-order derivatives, we proved that the IBV problems with the boundary conditions

(LLBACs) constructed in [30, 31] are stable in L2-norm. Furthermore, we extend the strategy

of auxiliary variables to two-dimensional case and obtain the corresponding energy estimate by

carefully dealing with the boundary conditions at corners. For one-dimensional case, we also

consider that the parameters k0 change with time t when the adaptive algorithm is implemented

in the Appendix. The framework of this paper is still valid to prove the stability of the boundary

conditions LLABCs with adaptive k0. For two-dimensional case, ξ0 and η0 are possible to

be functions of spatial x and y, the stability analysis will be very complicate. In practical

computations where the parameters ξ0 and η0 are only functions of time t, the energy estimate

can also be obtained. In this paper, we also discuss a variety of boundary conditions LABCs,
many numerical examples showed that LABCs are stable numerically and even have a better

performance (see Fig. 4.1 and Table 4.1) than LLABCs. Although the numerical simulations

show that the solutions of the reduced problem can well approximate the original solution, the

theoretical approximate accuracy still remain open. The rigorous mathematical analysis of the

accuracy of the LABCs would be an interesting topic for the future research.

In the future, we will base on the results of energy estimate in this paper to consider the

nonlinear Schrödinger equation in semiclassical regime on unbounded domain:

iε∂tψ(x, t) = −ε2△ψ(x, t) + V (x)ψ(x, t) + f(|ψ(x, t)|2)ψ(x, t), x ∈ R
d, t > 0,

with the “scaled” Planck constant 0 < ε ≪ 1. In this situation, the wave function ψ becomes

oscillatory of wave length O(ε). This means one has to work on a large computational domain

that contains thousands to millions of wavelengths, and each of them needs to be resolved if

direct numerical methods are applied. For example, a mesh size of O(ǫ) is required when using

the time-splitting spectral method [36]. We will analyze the relationship between energy bound

and ε by using the technique in this paper, then will propose an asymptotic method based on

frozen Gaussian approximation for the case of ε being small (refer to [37] for linear Schrödinger

equation in semiclassical regime).
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Appendix: Adaptive algorithm for wavenumber parameter

LABCs include parameter k0 =
√
ω0 to be determined. This parameter is related to the

frequency of the wave impinging on the artificial boundary. In order to obtain the local structure

of the wave in the frequency domain, the Gabor transform was introduced in [29], expressed as,

ψ̂(k, t) =

∫ xr

xl

1[xr−b,xr]ψ(x, t)e
−ikx =

∫ xr

xl−b

ψ(x, t)e−ikx,

with b denoting the window width. One reasonable choice of wavenumber k0 is to take the

mode such that its spectrum is the maximum, i.e.,

|ψ̂(k0, t)| = sup
k≥0

{

|ψ̂(k, t)|
}

. (A.1)

Another choice is to use the energy-weighted wavenumber approach

k0 =

∫∞

0
|ψ̂(k, t)|mkdk

∫∞

0 |ψ̂(k, t)|mdk
(A.2)

with m a positive real number. The authors in [29] suggested to use m = 4. In many practical

calculations, the wavenumber k0 by formula (A.2) is more efficient and accurate than (A.1). In

fact, the cost of comparing all magnitudes of Fourier modes is expensive. On the other hand,

when two Fourier modes are both dominant, a medial value of these two different wavenumbers

instead of choosing one of them is better to minimize the reflection.

For two dimensions, the algorithm of determining ξ0 and η0 can be extended straightfor-

wardly from that of one dimeision. For example, to obtain the wavenumber ξ0(y, t) on the west

boundary Γw, we could use the Gabor transform in x-direction:

ψ̂(ξ, y, t) =

∫ xw+b(y)

xw

ψ(x, y, t)e−iξxdx,

where the window length b(y) is a function of y. The wavenumber ξ0 can be obtained by

ξ0(y, t) =

∫∞

0 |ψ̂(ξ, y, t)|mξdξ
∫∞

0
|ψ̂(ξ, y, t)|mdξ

. (A.3)

The parameters on other artificial boundaries can be calculated by the same way.
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