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Abstract

In a previous work, the author and D.C. Dobson proposed a numerical method for

solving the complex Helmholtz equation based on the minimization variational princi-

ples developed by Milton, Seppecher, and Bouchitté. This method results in a system

of equations with a symmetric positive definite coefficient matrix, but at the same time

requires solving simultaneously for the solution and its gradient. Herein is presented a

method based on the saddle point variational principles of Milton, Seppecher, and Bouch-

itté, which produces symmetric positive definite systems of equations, but eliminates the

necessity of solving for the gradient of the solution. The result is a method for a wide class

of Helmholtz problems based completely on the Conjugate Gradient algorithm.

Mathematics subject classification: Primary 65N30, Secondary 35A15.
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1. Introduction

The Helmholtz equation

∇ · L∇u =Mu,

is useful in modeling wave propagation in problems arising from many different physical sit-

uations. We will focus only on the homogeneous equation for simplicity and brevity, but the

methods presented here can easily be extended to the non-homogeneous case. Suppose we

wish to solve the Helmholtz equation in a domain Ω ⊂ Rd, and assume that L and M are

complex-valued functions. A common source of numerical methods for solving this equation is

the variational principle∫
Ω

[−L∇u · ∇v̄ −Muv̄] dx = 0, ∀ v ∈ H1
0 (Ω). (1.1)

Since this is a stationary principle, the resulting system of equations is often indefinite, and

indefinite systems are generally more difficult to solve than a system of equations having a

positive definite coefficient matrix.

Because of the challenges in solving these indefinite systems, there has been much work

devoted to solving the Helmholtz equation by replacing the indefinite systems with equivalen-

t symmetric positive definite linear systems. Classical examples of such approaches are the

CGNR and CGNE methods [1], based on solving normal equations associated with the orig-

inal system. While such approaches produce positive definite systems, the normal equations

are often poorly conditioned and preconditioning can be difficult. Another related approach
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is First Order System Least Squares (FOSLS) [2–4],which converts the second order equation

into an equivalent system of first order equations and then solves a least squares problem for

this system. The method presented here also produces positive definite systems of equations,

but it does so without reformulation as a least squares problem.

When iterative methods are employed to solve a system of linear equations, it is usually

necessary to precondition the original system in order to speed up convergence. A great deal of

work has been dedicated to formulating effective preconditioning strategies for the linear systems

resulting from discretizations of the Helmholtz equation [5]. One approach that has seen much

success is the Shifted Laplacian preconditioner [6–8]. In this approach, the precoditioner for

the system of equations corresponding to ∆u + k2u = 0 is the matrix corresponding to the

“shifted” equation ∆u + (α + iβ)u = 0. If the imaginary shift β is large enough, multigrid

methods are expected to be successful in solving the shifted problem, and if α ≈ 1, the shifted

operator should be a good preconditioner for the original problem. While this approach is

often effective, in [9] the authors point out the advantages in using a preconditioner that is

symmetric positive definite. When the preconditioning matrix is not positive definite, the

coefficient matrix of the preconditioned system is not symmetric with respect to any inner

product, which limits the methods available for solving the resulting system. The solution

suggested in [9] is to use an approximation of the absolute value of the original coefficient

matrix as preconditioner. In the method proposed here, both the matrices and the suggested

preconditioners are symmetric positive definite, and therefore a wide range of Krylov subspace

methods is available. In particular, we shall demonstrate the results obtained with Conjugate

Gradient, which has a short recurrence and is very simple to implement and parallelize.

As a background to this approach, we follow [10], where Milton, Seppecher, and Bouchitté

developed variational principles that apply to the Helmholtz equation above, as well as the

time-harmonic Maxwell equations and the equations of linear elasticity in lossy materials. To

derive these variational principles, we first define the dual variable

v = iL∇u.

Then (
L 0

0 M

)(
∇u
u

)
=

(
L∇u
Mu

)
=

(
−iv

−i∇ · v

)
,

or equivalently,

G = ZF ,

where

F =

(
∇u
u

)
, G =

(
−iv

−i∇ · v

)
, Z =

(
L 0

0 M

)
.

For a complex quantity z, we will write z′ = Re(z) and z′′ = Im(z). Taking real and imaginary

parts, the constitutive relation becomes

G′ = Z ′F ′ − Z ′′F ′′ and G′′ = Z ′F ′′ + Z ′′F ′,

which can be written in matrix form as(
G′′

G′

)
=

(
Z ′′ Z ′

Z ′ −Z ′′

)(
F ′

F ′′

)
. (1.2)
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Solving this relation for the imaginary parts of F and G, we find that(
G′′

F ′′

)
= L

(
F ′

−G′

)
, (1.3)

where

L =

(
Z ′′ + Z ′(Z ′′)−1Z ′ Z ′(Z ′′)−1

(Z ′′)−1Z ′ (Z ′′)−1

)
.

The matrix L is positive definite as long as Z ′′ is positive definite (see [10]). In terms of L and

M , this means that

L′′(x) > 0 and M ′′(x) > 0 for all x ∈ Ω.

In practice it is only necessary that the values of L and M lie within any half plane of the

complex plane. This half plane can then be rotated so that it becomes the upper half plane

(see Section 2).

The approach in [11] was to use this constitutive relation and the corresponding energy

functional ∫
Ω

(
F ′

−G′

)
·
(
Z ′′ + Z ′(Z ′′)−1Z ′ Z ′(Z ′′)−1

(Z ′′)−1Z ′ (Z ′′)−1

)(
F ′

−G′

)
dx

to formulate a numerical method. When this variational principle is discretized by the finite

element method, the result is a system of equations whose coefficient matrix can be partitioned

into N×N blocks, where N is the number of nodes in the computational grid. A similar system

of equations must be solved to find approximations for u′′ and v′. In all, to find u′ and u′′, one

must solve two positive definite systems of equations of size 3N × 3N .

Here we develop a new method based on the saddle point variational principles in [10] that

does not require that v be solved for in order to find u, but is still based on solving positive

definite systems of equations. First, in Section 2, we will analyze the saddle point variational

principles from [10] upon which our method is based. In Section 3, we will discuss the details of

handling Dirichlet, Neumann, and Robin boundary conditions with these variational principles.

Section 4 contains the derivation of a standard bound on the error incurred when the Helmholtz

equation is solved using a finite element method that discretizes the saddle point variational

principle. Section 5 outlines the numerical method and discusses the conditioning of the system.

In Section 6, we provide several straightforward numerical explorations of the performance of

the algorithm, as well as numerical verification of the error bound from Section 4.

2. The Saddle Point Variational Principle

The derivation of the saddle point variational principle from [10] follows the same steps

presented in the introduction for the minimization principle, the difference being that instead

of continuing to the constitutive relation (1.3), we stop at equation (1.2). Assuming that Z ′′ is

positive definite, from (1.2) we define the functional

Y (u′, u′′) =

∫
Ω

(
F ′

F ′′

)
·
(
Z ′′ Z ′

Z ′ −Z ′′

)(
F ′

F ′′

)
dx. (2.1)

Let u′, u′′ ∈ H1(Ω) be the real and imaginary parts of a solution to the Helmholtz equation.

Let s ∈ H1
0 (Ω) and define

S =

(
∇s
s

)
.
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Then we have

Y (u′ + s, u′′) =

∫
Ω

(
F ′ + S
F ′′

)
·
(
Z ′′ Z ′

Z ′ −Z ′′

)(
F ′ + S
F ′′

)
dx

= Y (u′, u′′) + 2

∫
Ω

(
F ′

F ′′

)
·
(
Z ′′ Z ′

Z ′ −Z ′′

)(
S
0

)
dx+ Y (s, 0).

The integral in the line above can be rewritten as

∫
Ω

(
G′′

G′

)
·

 S
0

 dx =

∫
Ω

(
−v′

−∇ · v′

)
·
(

∇s
s

)
dx

=

∫
Ω

[−v′ · ∇s−∇ · v′s] dx =

∫
Ω

−∇ · [v′s] dx =

∫
∂Ω

−v′ · ns dS = 0. (2.2)

Therefore,

Y (u′ + s, u′′) = Y (u′, u′′) +

∫
Ω

S · Z ′′S dx,

and the last term must be nonnegative, since Z ′′ is assumed to be positive definite. A similar

calculation yields

Y (u′, u′′ + s) = Y (u′, u′′)−
∫
Ω

S · Z ′′S dx.

This shows that (u′, u′′) is at a saddle point of the functional Y .

Suppose that (u′, u′′) is a saddle point of the functional Y . Then the functional Q(s′, s′′) =

Y (u′ + s′, u′′ + s′′), defined for all s′, s′′ ∈ H1
0 (Ω), should have a saddle point at s′ = s′′ = 0. A

necessary condition for this to happen is that the first variation of Q should vanish. If

S ′ =

(
∇s′
s′

)
and S ′′ =

(
∇s′′
s′′

)
,

then we must have

0 =

∫
Ω

(
F ′

F ′′

)
·
(
Z ′′ Z ′

Z ′ −Z ′′

)(
S ′

S ′′

)
dx.

After writing this equation out in terms of u, s, L, and M and integrating by parts, we find

that the integrals ∫
Ω

(
−∇ · L′′∇u′ +M ′′u′ −∇ · L′∇u′′ +M ′u′′

)
s′ dx,

and ∫
Ω

(
−∇ · L′∇u′ +M ′u′ +∇ · L′′∇u′′ −M ′′u′′

)
s′′ dx

must add to zero for any choices of s′ and s′′ in H1
0 (Ω). The real and imaginary parts of the

equation ∇ · L∇u =Mu can be written as

∇ · L′∇u′ −∇ · L′′∇u′′ −M ′u′ +M ′′u′′ = 0,

and

∇ · L′∇u′′ +∇ · L′′∇u′ −M ′u′′ −M ′′u′ = 0.
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Notice that the left-hand sides of these equations are just the opposites of the expressions

multiplying s′ and s′′ in the integrals above. Since the result of the integral must be zero

regardless of the choice of s′ and s′′, the saddle point of Y must be a solution to the Helmholtz

equation.

So far, we have assumed that Z ′′ is positive definite, but it is often possible to use this

method even when L and M do not have positive imaginary parts. A solution of the equation

∇ · L∇u =Mu

is also a solution to

∇ · eiθL∇u = eiθMu, (2.3)

where θ is a constant. Therefore, to ensure that the imaginary part of Z ′′ is positive definite,

we can apply a rotation so that the new coefficients eiθL and eiθM have positive imaginary

parts. The necessary conditions on L and M for the method to apply are that their values lie

within one open half-plane. That half-plane may then be rotated so that it becomes the upper

half-plane.

3. Boundary Conditions

The calculations done above show that a saddle point of Y satisfying u′ = f ′ and u′′ = f ′′

on ∂Ω is a solution of {
∇ · L∇u =Mu, in Ω,

u = f, on ∂Ω.

We can also solve the Neumann problem{
∇ · L∇u =Mu, in Ω,

v · n = g, on ∂Ω.
(3.1)

Let s′, s′′ ∈ H1(Ω) be arbitrary test functions. Then we have

0 =

∫
Ω

(
(∇ · v′ −∇ · v′)s′ + (−∇ · v′′ +∇ · v′′)s′′

)
dx

=

∫
Ω

(
− v′ · ∇s′ −∇ · v′s′ + v′′ · ∇s′′ +∇ · v′′s′′

)
dx+

∫
∂Ω

(
s′v′ · n− s′′v′′ · n

)
dx

=

∫
Ω

(
G′′

G′

)
·
(

S ′

S ′′

)
dx+

∫
∂Ω

[s′v′ · n− s′′v′′ · n] dS

=

∫
Ω

(
F ′

F ′′

)
·
(
Z ′′ Z ′

Z ′ −Z ′′

)(
S ′

S ′′

)
dx+

∫
∂Ω

[s′v′ · n− s′′v′′ · n] dS.

Therefore, in order to solve the Neumann problem, we solve the weak equation∫
Ω

(
F ′

F ′′

)
·
(
Z ′′ Z ′

Z ′ −Z ′′

)(
S ′

S ′′

)
dx

=

∫
∂Ω

[−s′g′ + s′′g′′] dS for all s′, s′′ ∈ H1(Ω).
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To solve the Robin problem {
∇ · L∇u =Mu, in Ω,

u+ av · n = g, on ∂Ω,
(3.2)

we begin with the weak form of the Neumann problem, which we will write as

0 =

∫
Ω

(
F ′

F ′′

)
·
(
Z ′′ Z ′

Z ′ −Z ′′

)(
S ′

S ′′

)
dx+

∫
∂Ω

(
s′

s′′

)
·
(

v′ · n
−v′′ · n

)
dS.

We split the boundary condition into its real and imaginary parts as

u′ + a′v′ · n− a′′v′′ · n = g′,

u′′ + a′v′′ · n+ a′′v′ · n = g′′,

which we can write as(
u′

u′′

)
+

(
a′ a′′

a′′ −a′

)(
v′ · n

−v′′ · n

)
=

(
g′

g′′

)
.

If the matrix in the equation above is called W , then(
v′ · n

−v′′ · n

)
= −W−1

(
u′

u′′

)
+W−1

(
g′

g′′

)
,

so the weak form of the equation with Robin boundary conditions is∫
Ω

(
F ′

F ′′

)
·
(
Z ′′ Z ′

Z ′ −Z ′′

)(
S ′

S ′′

)
dx−

∫
∂Ω

(
u′

u′′

)
·W−1

(
s′

s′′

)
dS

= −
∫
∂Ω

(
g′

g′′

)
·W−1

(
s′

s′′

)
dS. (3.3)

The inverse of W is

W−1 =
1

−(a′)2 − (a′′)2

(
−a′ −a′′
−a′′ a′

)
=

1

|a|2

(
a′ a′′

a′′ −a′

)
=

1

|a|2
W,

so if we require that a′ be negative, the matrix that results from discretizing the left-hand side

of (3.3) will have the same block form as those that result from the other boundary conditions.

If a′ > 0, we can instead rotate so that L′′ and M ′′ are negative so that the necessary block

structure of the matrices is preserved.

Care must be taken with solving the Neumann and Robin problems when rotation is used,

to ensure that the correct boundary conditions are enforced. For example, if one desires to

solve the Neumann problem {
∇ · L∇u =Mu, in Ω,

v · n = g, on ∂Ω.

the rotated version of the problem is{
∇ · eiθL∇u = eiθMu, in Ω,

ṽ · n = eiθg, on ∂Ω,

where ṽ = ieiθL∇u.
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4. Error Bound

We will make the following assumptions on Z ′′:

a. there is a constant γ1 such that |[Z ′′]ij(x)| < γ1 for all i, j, and x ∈ Ω

b. there is γ2 such that Z ′′(x) > γ2I for all x ∈ Ω.
(4.1)

The requirements on Z ′′ are equivalent to requiring similar bounds on L′′ and M ′′. Define the

space V = [H1(Ω)]2, endowed with the norm

∥(u′, u′′)∥V = (∥u′∥2H1(Ω) + ∥u′′∥2H1(Ω))
1
2 . (4.2)

Also, we will assume that VN1 and VN2 are finite dimensional subspaces of H1(Ω), and that

VN = VN1 × VN2 is the space in which we seek our numerical solution.

Define a functional f(s′) for s′ ∈ H1(Ω) as

f(s′) =
1

2
Y (s′, u′′) +Q(s′, u′′)

=
1

2

∫
Ω

(
S ′

F ′′

)
·
(
Z ′′ Z ′

Z ′ −Z ′′

)(
S ′

F ′′

)
dx+Q(s′, u′′),

where, in practice, Q(s′, u′′) would contain terms that arise from the enforcement of boundary

conditions and any inhomogeneous terms. We will further split the terms as

f(s′) =
1

2
B(s′, s′)− F (s′, u′′),

where

B(s′, s′′) =

∫
Ω

S ′ · Z ′′S ′′ dx

and F (s′, u′′) contains the rest of the terms in f(s′). If u′ is a minimizer of f(s′), then u′ must

satisfy the Euler-Lagrange equation

B(u′, s′) = F (s′, u′′) for all s′ ∈ H1(Ω). (4.3)

Therefore, we can write

f(s′) =
1

2
B(s′, s′)− F (s′, u′′) = B(u′, u′)− F (u′, u′′) +

1

2
B(s′, s′)− F (s′, u′′)

= B(u′, u′)− F (u′, u′′) +
1

2
B(s′, s′)−B(u′, s′)

=
1

2
B(u′, u′)− F (u′, u′′) +

1

2
B(u′, u′)−B(u′, s′) +

1

2
B(s′, s′)

=
1

2
B(u′, u′)− F (u′, u′′) +

1

2
B(u′ − s′, u′ − s′).

Suppose that u′N ∈ VN1 is such that

f(u′N ) = min
s∈VN1

f(s′).
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Then

B(u′ − u′N , u
′ − u′N )

1
2 = min

s′∈VN1

B(u′ − s′, u′ − s′)
1
2 , (4.4)

and the inequalities (4.1) imply that

√
γ2∥s′∥H1(Ω) ≤

√
B(s′, s′) ≤ C

√
γ1∥s′∥H1(Ω) for all s′ ∈ H1(Ω).

Applying these inequalities to both sides of (4.4) yields

√
γ2∥u′ − u′N∥H1(Ω) ≤ min

s′∈VN1

C
√
γ1∥u′ − s′∥H1(Ω).

Here and in what follows, C will represent a constant that does not depend on u′, u′′, or the

grid spacing h.

In order to get the necessary bound, we must choose s′ properly. Let F1 be the orthogonal

projection from H1(Ω) onto VN1. Then ∥F1∥B(H1(Ω),H1(Ω)) = 1, where B(H1(Ω),H1(Ω)) is the

set of all bounded linear functions from H1(Ω) to itself. We then take s′ = F1u
′ to obtain the

inequality

∥u′ − u′N∥H1(Ω) ≤ C∥u′ − F1u
′∥H1(Ω). (4.5)

If instead we use

f̃(s′′) =
1

2
Y (u′, s′′) +Q(u′, s′′)

=
1

2

∫
Ω

(
F ′

S ′′

)
·
(
Z ′′ Z ′

Z ′ −Z ′′

)(
F ′

S ′′

)
dx+Q(u′, s′′),

and perform calculations similar to those above, we obtain the bound

∥u′′ − u′′N∥H1(Ω) ≤ C∥u′′ − F2u
′′∥H1(Ω), (4.6)

where F2 is the orthogonal projection from H1(Ω) onto VN2.

Combining inequalities (4.5) and (4.6), we find that

∥(u′ − u′N , u
′′ − u′′N )∥2V = ∥u′ − u′N∥2H1(Ω) + ∥u′′ − u′′N∥2H1(Ω)

≤ C
(
∥u′ − F1u

′∥2H1(Ω) + ∥u′′ − F2u
′′∥2H1(Ω)

)
= C∥(u′ − F1u

′, u′′ − F2u
′′)∥2V

and consequently,

∥(u′, u′′)− (u′N , u
′′
N )∥V ≤ C∥(u′ − F1u

′, u′′ − F2u
′′)∥V .

We partition Ω into subregions el, each of which can be viewed as a suitably shifted and

rotated version of a reference element ê, so that there exist affine changes of variables Fl(x) =

Blx+xl such that Fl(ê) = el. In what follows, a hat over a function will denote the corresponding

function defined over the reference element ê obtained by a change of variables.

We define the seminorm | · |s by

|u|2s = [u, u]s,



A Saddle Point Numerical Method for Helmholtz Equations 27

where

[u,w]s =
∑
|α|=s

∫
ê

Dαu ·Dαw dx (4.7)

and α is a multi-index. From [12] we get the inequality

c−1hs−
d
2 |w|s,el ≤ |ŵ|s ≤ chs−

d
2 |w|s,el , (4.8)

where c is a constant, w = ŵ ◦ F−1
l , and the subscript el denotes (4.7) with el in place of ê.

We now recall the following lemma from [13]:

Lemma 4.1 (Bramble-Hilbert Lemma) For some region Ω ⊂ Rd and some integer k ≥
−1, let there be given a bounded linear functional

f : Hk+1(Ω) → R,

satisfying |f(u)| ≤ δ∥u∥Hk+1(Ω) for all u ∈ Hk+1(Ω) for some δ independent of u. Suppose that

f(u) = 0 for all u ∈ Pk(Ω̄). Then there exists a constant C, dependent only on Ω such that

|f(u)| ≤ Cδ|u|k+1, u ∈ Hk+1(Ω).

Let s ∈ {0, 1} and fix w ∈ Hs(ê). Define the functionals

L1(û) = [û− F1û, w]s and L2(û) = [û− F2û, w]s.

Since

|Lj(û)| ≤ |û− Fj û|s|w|s ≤
(
|û|s + |Fj û|s

)
|w|s

≤
(
∥û∥H1(ê) + ∥Fj û∥H1(ê)

)
|w|s

≤ 2∥û∥H1(ê)|w|s ≤ 2∥u∥Hk+1(ê)|w|s,

and Fju = u for polynomial functions u in VNj (j = 1, 2), we see that the Bramble-Hilbert

Lemma applies, and there exist constants such that

|L1(û
′)| ≤ C|w|s|û′|k+1 and |L2(û

′′)| ≤ C|w|s|û′′|k+1,

as long as k is small enough so that all polynomials of degree less than or equal to k are

contained in the span of the basis functions representing û′ and û′′. Taking w = û′ − F1û
′ in

the first inequality and w = û′′ − F2û
′′ in the second yields

|û′ − F1û
′|s ≤ C|û′|k+1 and |û′′ − F2û

′′|s ≤ C|û′′|k+1. (4.9)

Assuming that h ≤ 1 and using inequality (4.8), we see that

|u′ − F1u
′|s,el ≤ Ch

d
2−s|û′ − F1û

′|s ≤ Ch
d
2−s|û′|k+1 ≤ Chk−s+1|u′|k+1,el ,

|u′′ − F2u
′′|s,el ≤ Ch

d
2−s|û′′ − F2û

′′|s ≤ Ch
d
2−s|û′′|k+1 ≤ Chk−s+1|u′′|k+1,el .
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Consequently, the overall error satisfies

∥(u′, u′′)− (u′N , u
′′
N )∥2V ≤ C∥(u′ − F1u

′, u′′ − F2u
′′)∥2V

≤ C
∑
l

(
|u′ − F1u

′|20,el + |u′ − F1u
′|21,el + |u′′ − F2u

′′|20,el + |u′′ − F2u
′′|21,el

)

≤ C
∑
l

(
h2k+2|u′|2k+1,el

+ h2k|u′|2k+1,el
+ h2k+2|u′′|2k+1,el

+ h2k|u′′|2k+1,el

)

≤ Ch2k
(
|u′|2k+1,Ω + |u′′|2k+1,Ω

)
.

We have now proved:

Theorem 4.1. Under the assumptions (4.1) on Z ′′, if the solution (u′, u′′) ∈ [Hk+1(Ω)]2 and

the finite element subspace used in the numerical method contains [Pk(Ω̄)]
2, then there exists a

constant C such that the error satisfies

∥(u′, u′′)− (u′N , u
′′
N )∥2V ≤ Ch2k

(
|u′|2k+1,Ω + |u′′|2k+1,Ω

)
,

where h ≤ 1 is the grid spacing.

5. The Numerical Method

To fix ideas, we will examine the numerical solution of the Dirichlet problem{
∇ · L∇u =Mu, in Ω,

u = f, on Ω.
(5.1)

The first step in solving the problem is to select a set of finite element basis functions. The

numerical examples presented here will use a rectangular grid with bilinear basis functions.

Regardless of how the basis is chosen, we will assume that the basis functions are labeled

as {ψk} and we assume that the solution has the form(
u′

u′′

)
=

(
ψ′
0 +

∑
α′
kψk

ψ′′
0 +

∑
α′′
kψk

)
,

where ψ′
0 and ψ

′′
0 are auxiliary functions satisfying the boundary conditions ψ′

0 = f ′ and ψ′′
0 = f ′′

on ∂Ω. The weak form of the Euler-Lagrange equation for the saddle point variational principle

is

0 =

∫
Ω

(
F ′

F ′′

)
·
(
Z ′′ Z ′

Z ′ −Z ′′

)(
S ′

S ′′

)
dx for all s′, s′′ ∈ H1

0 (Ω),

where, as usual,

S ′ =

(
∇s′
s′

)
and S ′′ =

(
∇s′′
s′′

)
.

We make the substitution above for u′ and u′′ and let s′ and s′′ be equal to each of the basis

functions in turn. In doing so, we arrive at a system of equations which has the block form(
A1 A2

A2 −A1

)(
α′

α′′

)
=

(
b1
b2

)
, (5.2)
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where A1 is positive definite. The entries of the blocks in the coefficient matrix satisfy

[A1]kj =

∫
Ω

∇ψk · L′′∇ψj dx+

∫
Ω

ψkM
′′ψj dx,

[A2]kj =

∫
Ω

∇ψk · L′∇ψj dx+

∫
Ω

ψkM
′ψj dx.

The elements of the vector b = (b1, b2)
T satisfy

[b1]j = −
∫
Ω

∇ψ′
0 · L′′∇ψj dx−

∫
Ω

ψ′
0M

′′ψj dx−
∫
Ω

∇ψ′′
0 · L′∇ψj dx−

∫
Ω

ψ′′
0M

′ψj dx,

[b2]j = −
∫
Ω

∇ψ′
0 · L′∇ψj dx−

∫
Ω

ψ′
0M

′ψj dx+

∫
Ω

∇ψ′′
0 · L′′∇ψj dx+

∫
Ω

ψ′′
0M

′′ψj dx.

This system of equations (5.2) is of saddle point type, and therefore there is a wide array

of numerical methods that apply [14]. Among the simplest is the following, based on Schur

complements. By using this approach, we reduce the problem from solving an indefinite 2N×2N

system to solving two N ×N positive definite systems. We solve the second equation in (5.2)

for α′′ and substitute into the first to obtain

A1α
′′ = −b2 +A2α

′,

(A1 +A2A
−1
1 A2)α

′ = b1 +A2A
−1
1 b2.

(5.3)

Because A1 is positive definite and A2 is symmetric, the coefficient matrices in both these

systems of equations are positive definite. Equivalently, we can solve the second equation for

α′ and make the corresponding substitution into the first equation to obtain the system of

equations
A2α

′ = b2 +A1α
′′,

(A2 +A1A
−1
2 A1)α

′′ = b1 −A1A
−1
2 b2.

(5.4)

The methods below can be adapted to this second system of equations under the assumption

that A2 is positive definite, which corresponds to L and M having positive real parts. If the

real parts of L and M are both positive, the problem can be rotated so that the imaginary

parts become positive, so we will focus primarily on equations (5.3).

While the matrix A1+A2A
−1
1 A2 is positive definite, it is also costly to store and to compute.

For this reason, we use the preconditioned conjugate gradient (PCG) method to compute the

solution to the system with this coefficient matrix, since this method only requires the ability

to perform matrix-vector multiplication with the coefficient matrix. As a preconditioner for

A1 + A2A
−1
1 A2, we use the matrix A1. In this case, the preconditioned system has coefficient

matrix

A−1
1 (A1 +A2A

−1
1 A2) = I + (A−1

1 A2)
2.

We can expect our system of equations to have the best conditioning when A−1
1 and A−1

2 are

approximately the same, or alternatively when ∥A1∥2 is much larger than ∥A2∥2.
Systems with coefficient matrix A1 appear explicitly in the algorithm, but must also be

solved at each step when PCG is applied to the matrix A1 + A2A
−1
1 A2, and there are many

different ways in which this system can be solved. In the numerical examples that follow,

all the systems of equations of the form A1x = b are solved using PCG with an incomplete
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Cholesky factorization of A1 as a preconditioner. In essence, this introduces an inner and an

outer PCG iteration in step 4 below. The following section illustrates how the total number of

PCG iterations performed solving systems A1x = b is related to the size of the computational

grid and the coefficients in the Helmholtz equation.

The algorithm used here is as follows, though details such as the iterative solver or precon-

ditioning method may be modified as desired:

1. Form the matrices A1 and A2.

2. Compute the right-hand side vectors b1 and b2.

3. Compute w1 = b1 +A2A
−1
1 b2.

4. Solve (A1 +A2A
−1
1 A2)α

′ = w1 using PCG with the preconditioner A1.

5. Compute w2 = −b2 +A2α
′.

6. Solve A1α
′′ = w2 by PCG with an incomplete Cholesky factorization of A1 as precondi-

tioner.

This algorithm is completely implicit, and therefore is well suited for large-scale problems.

Because all that is required are sparse matrix-vector multiplications, parallel implementations

of this algorithm can produce a significant speedup. In particular, this algorithm could be

implemented on a GPU cluster, where many graphics processing units (each of which contains

many processing cores) are used in parallel to perform very fast computations.

In some situations, particularly those involving high frequency, ∥A2∥2 is much larger than

∥A1∥2, suggesting that we use formulation (5.4). However, A2 is not positive definite and

therefore neither is A2+A1A
−1
2 A1. The basic algorithm outlined above can still be used in this

case, provided that PCG is replaced by an iterative method that does not require positivity,

such as GMRES.

As pointed out in [15], many solver packages are focused mainly on solving systems of

equations with real matrices. This method can be considered an equivalent real formulation of

the usual complex system of equations.

Fig. 5.1. The distribution of the eigenvalues of A1 +A2A
−1
1 A2 (left) and the eigenvalues of A−1

1 (A1 +

A2A
−1
1 A2) (right) for an example with 30× 30 computational grid.
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Fig. 5.2. The distribution of the eigenvalues of A1 (left) and the eigenvalues of (PTP )−1A1 (right),

where P is an incomplete Cholesky factorization of A1 for an example with a 30 × 30 computational

grid.

5.1. Conditioning

In the numerical algorithm outlined above, we suggest that A1 be used as a preconditioner

for the system with matrix A1+A2A
−1
1 A2. In Fig. 5.1, we see the distribution of the eigenvalues

of A1+A2A
−1
1 A2 and A−1

1 (A1+A2A
−1
1 A2) for an example where the real and imaginary parts

of L and M take on random values in the range (0, 10).

Because the bulk of the work in this method comes from solving systems with matrix A1, it

is important that such systems can be effectively preconditioned. A simple and effective choice

is to use an incomplete Cholesky factorization of A1 as the preconditioner, but there are many

other preconditioning strategies that might be used. If the algorithm is being implemented in

parallel, a particularly useful strategy would be to use a sparse approximate inverse [16], which

avoids the “serial bottleneck” caused by having to perform back substitutions at each step in

the PCG algorithm.

Fig. 5.2 shows the distribution of eigenvalues of A1 before and after preconditioning. The

preconditioner used here is an incomplete Cholesky factorization of A1 with drop tolerance 0.01

and the real and imaginary parts of L and M take on random values is the range (0, 10).

6. Numerical Results

In this section, we provide some demonstrations of the numerical solution of the Helmholtz

problem

∇ · L∇u =Mu.

Fig. 6.1 demonstrates the application of this method to a non-homogeneous problem with

variable coefficients. The coefficients are chosen so that the frequency of the solution is higher

in the lower right half of the unit square than in the upper left half, and the non-homogeneous

term is a point source. In the following numerical examples we will solve homogeneous problems

with constant coefficients and attempt to quantify the convergence of the algorithm for different

values of the coefficients.

Fig. 6.2 shows how the fill-in depends on the drop tolerance in the incomplete Cholesky

factorization of A1 (which is used in this section as preconditioner for systems with coefficient
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Fig. 6.1. The real (left) and imaginary (right) parts of a solution to the Helmholtz equation with a

point source in the center of the domain and homogeneous Neumann boundary conditions. The two

phase material is chosen so that the frequency is higher below the line y = x than above it.

matrix A1) for the problem with L = 1 and M = 30− 90i (before rotation) and the number of

PCG iterations necessary to solve the same problem with a tolerance of 1×10−4 on the relative

residual.
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Fig. 6.2. Number of iterations and fill-in as a function of the drop tolerance used in the incomplete

Cholesky factorization of A1.

In Fig. 6.3, we see the total number of PCG iterations necessary to solve all the systems with

coefficient matrix A1 for several different values of the coefficients in the problem as the size of

the computational grid increases. The tolerances for the PCG algorithm is 1 × 10−6 and the

drop tolerance for the incomplete Cholesky factorization of A1 is 1× 10−4. It should be noted

that in this case the growth in iterations happens entirely within the inner PCG iterations. The

number of outer iterations required was either 2 or 3 in every instance.

Fig. 6.4 shows how the number of iterations is related to the frequency for problems where

M is in the left-hand side of the upper half plane. In this situation, we cannot take advantage

of the fact that ∥A2∥2 > ∥A1∥2 if we wish to solve only positive definite systems because A2 is

not positive definite. The number of grid points per wavelength is held approximately constant

at 10 points per wavelength as ω grows.



A Saddle Point Numerical Method for Helmholtz Equations 33

Fig. 6.3. The total number of inner PCG iterations required to solve the Helmholtz equation for several

values of L and M as the size of the computational domain increases.

Fig. 6.4. The total number of inner PCG iterations required to solve the Helmholtz equation with

L = 1 and M = −ω2 +M ′′i for several values of M ′′ (after rotation). The number of grid points per

wavelength is held approximately constant at 10 as ω increases.

Fig. 6.5. The error and number of inner iterations in an example problem versus the value of θ used

to rotate the problem.



34 R.B. RICHINS

Table 6.1: The error in the finite element solution for various grid sizes.

Grid h ∥(u′ − u′
N , u′′ − u′′

N )∥2V
32× 32 0.032258 1.4013× 10−3

40× 40 0.025641 8.8176× 10−4

50× 50 0.020408 5.5822× 10−4

64× 64 0.015873 3.3785× 10−4

70× 70 0.014493 2.8107× 10−4

80× 80 0.012658 2.1502× 10−4

90× 90 0.011236 1.6936× 10−4

100× 100 0.010101 1.3663× 10−4

128× 128 0.007874 8.3172× 10−5

256× 256 0.003923 2.0663× 10−5

512× 512 0.001957 5.1762× 10−6

Fig. 6.6. The number of inner iterations required to solve the Helmholtz equation as the real and

imaginary parts of M vary for several values of L. The grid size is fixed at 30× 30.
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The graphs in Fig. 6.6 show in more detail how the number of iterations required to solve

the Helmholtz equation depends on the coefficients in the problem. In order to get maximum

advantage from the preconditioning strategy outlined in Section 5.1, when both coefficients

L and M are in the first quadrant we choose formulation (5.3) when ∥A1∥∞ > ∥A2∥∞, and

we choose formulation (5.4) when the reverse inequality holds. Unfortunately, we must use

formulation (5.3) when L is in the first quadrant and M is in the second quadrant because in

this situation only A1 is positive definite.

Table 6.1 shows the relationship between the error and the grid spacing in a problem with

L = −0.25+0.25i andM = 0.1+0.3i and Dirichlet boundary conditions. In Fig. 6.5, the result

of rotation on an example with L = 3+ 2i and M = 1+ 4i is shown. The error and number of

iterations remain nearly constant until θ is such that one of the imaginary parts of the rotated

coefficients approaches zero.

7. Conclusion

By formulating a finite element method with the saddle-point variational principles of Mil-

ton, Seppecher, and Bouchitté, we are able to solve boundary value problems for the complex

Helmholtz equation through solving symmetric positive definite systems of equations. The

method is based on using elimination on the block structure of the finite element matrix to

produce two smaller systems of equations, both of which have positive definite coefficient ma-

trices. The systems can then be solved using purely iterative methods. This method applies to

a large class of problems, especially in light of the ability to “rotate” the coefficients of a given

problem to fit the assumptions of the algorithm.

It should be emphasized that the method developed here does not only apply to the

Helmholtz equation. In [10], there are similar variational principles given for the time-harmonic

Maxwell equations and the equations of linear elasticity in lossy materials. The ideas presented

here can easily be adapted to these situations. Also, the original variational principles of this

type, developed by Cherkaev and Gibianski in [17], can be used to apply this numerical method

to the complex Poisson equation.

As with the previous minimization-based method, the variational principles upon which

this method is based remain valid as long as L and M have positive imaginary part, but the

conditioning of the system deteriorates and the error incurred increases as L and M come close

to violating this condition.

There is still more study necessary to determine the conditions under which this approach

is competitive with other methods already in use. Also, it is worthwhile to consider other

boundary conditions in addition to the ones presented herein, such as a PML [18]. Also, the

application of this method to problems with a non-local boundary condition, such as those

considered in [19] may also be explored.

In Section 6, the preconditioning method used in the inner iterations was simply an incom-

plete Cholesky factorization. To the extent that the growth in iterations in the inner iterations

can be controlled, this method will become more attractive. Future work in this direction will

be to compare potential preconditioning methods and their performance in the overall algorith-

m, including multigrid, sparse approximate inverse [16], and sweeping preconditioners [20], and

also to compare the amount of work required when this method is implemented in parallel to

more standard methods of solving Helmholtz equations.
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