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Abstract

Based on the work of Shu [SIAM J. Sci. Stat. Comput, 9 (1988), pp.1073-1084], we

construct a class of high order multi-step temporal discretization procedure for finite vol-

ume Hermite weighted essential non-oscillatory (HWENO) methods to solve hyperbolic

conservation laws. The key feature of the multi-step temporal discretization procedure

is to use variable time step with strong stability preserving (SSP). The multi-step tem-

poral discretization methods can make full use of computed information with HWENO

spatial discretization by holding the former computational values. Extensive numerical

experiments are presented to demonstrate that the finite volume HWENO schemes with

multi-step discretization can achieve high order accuracy and maintain non-oscillatory

properties near discontinuous region of the solution.
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1. Introduction

In this paper, we construct a class of high order multi-step temporal discretization proce-

dure for finite volume HWENO (Hermite weighted essential non-oscillatory) methods to solve

hyperbolic conservation laws: {
ut +∇ · F (u) = 0,

u(x, 0) = u0(x).
(1.1)

In recent years, WENO (weighted essentially non-oscillatory) schemes have been designed as

a class of high order finite volume or finite difference schemes to solve hyperbolic conservation

laws with the property of maintaining both uniform high order accuracy and an essentially

* Received September 28, 2014 / Revised version received March 17, 2016 / Accepted September 22, 2016 /

Published online January 18, 2017 /
1) Corresponding author



HWENO Schemes with Multi-step Temporal Discretization Methods 53

non-oscillatory shock transition. WENO schemes were designed based on ENO (essentially

non-oscillatory) schemes in [8,21,22]. In [12], the first WENO scheme was proposed for a third-

order finite volume version in one space dimension. Third and fifth-order finite difference WENO

schemes in multi-space dimensions were constructed in [9], with a general framework for the

design of the smoothness indicators and nonlinear weights. Higher order finite difference WENO

schemes were constructed in [1], and finite volume WENO on unstructured and structured

meshes were constructed in [4, 7, 11, 13, 19]. WENO improves upon ENO in robustness, better

smoothness of fluxes, better steady state convergence, better provable convergence properties,

and more efficiency.

Finite volume Hermite WENO schemes were proposed in [3,14,15,26,27] and also successfully

applied in solving Hamilton-Jocobi equation [16, 17, 28, 29]. Hermite WENO schemes improve

the dissipation properties of a WENO scheme due to reducing its stencil width. In fact, the

compactness of a numerical stencil owes many advantages: the first, boundary conditions and

complex geometries are easier to solve; the second, for the same formal accuracy, compact

stencils are known to exhibit more resolution of the smaller scales by improving the dispersive

and the dissipative properties of the numerical scheme, [10,23].

WENO/HWENO is a spatial discretization procedure, namely, it is a procedure to approx-

imate the spatial derivative terms in (1.1). The time derivative term there must also be dis-

cretized. In [25], strong stability preserving (SSP) high order temporal discretizations keeping

the maximum principle are used. The SSP temporal discretization methods were first pro-

posed in [20,21], and were termed TVD (Total Variation Diminishing) temporal discretizations

because the method of lines is about solving an ordinary differential equation (ODE) in time

and its Euler forward version satisfy the total variation diminishing property when applied to

scalar one dimensional nonlinear hyperbolic conservation laws. A class of second to fifth order

SSP Runge-Kutta temporal discretizations was developed in [21]. Shu proposed a class of first

order Runge-Kutta temporal discretization which have large CFL number, as well as a class of

high order multi-step SSP methods in [20]. In [5], Gottlieb and Shu performed a systematic

study of Runge-Kutta SSP methods, showing the optimal two stage second-order and three

stage third-order SSP Runge-Kutta methods. Moreover, they proved the non-existence of four

stage fourth-order SSP Runge-Kutta methods with non-negative coefficients. In [6], Gottlieb

et al. reviewed and further developed SSP Runge-Kutta and multi-step methods. The new

results in [6] include the optimal explicit SSP linear Runge-Kutta methods, their application to

the strong stability of coercive approximations, a systematic study of explicit SSP multi-step

methods, and the study of the strong stability preserving property of implicit Runge-Kutta and

multi-step methods.

Multi-step temporal discretization methods can make full use of given information with

spatial discretization, however, the conventional multi-step temporal discretization which is

based on equal time step is not suitable for nonlinear conservation laws, for time step is variable

with fixed CFL number. In this paper, we generalize the optimal few stages multi-step methods

to variable size version to solve nonlinear conservation laws.

The paper is organized as follows. A brief description of the semi-discrete finite volume

Hermite WENO schemes and a class of high order SSP variable step multi-step temporal dis-

cretization methods are presented in Section 2. Numerical examples are shown in the Section

3 to demonstrate the advantages of maintaining high order accuracy, the resolution and cost

effective of the constructed schemes. Finally concluding remarks are given in Section 4.
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2. High Order SSP Variable Step Temporal Discretization

In this section, we will first briefly review the HWENO schemes, then we present a class of

high order SSP variable step multi-step temporal discretization methods.

2.1. Semi-discrete finite volume HWENO schemes

The following is the general framework of semi-discrete finite volume HWENO schemes

in [14,15,26]. Taking the gradient of (1.1), we have

(∇u)Tt +∇T (∇ · F (u)) = 0, (2.1)

thus

(∇u)Tt +∇ · (∇⊗ F (u)) = 0. (2.2)

For using a Hermite interpolation procedure, both the function and its derivative are needed

to evolved in time. Then the governing equation of finite volume HWENO schemes is:

Ut +∇ ·H(U) = 0, (2.3)

where

U =

(
ut

∇u

)
, H(U) =

(
F (u)

∇⊗ F (u)

)
.

We integrate the system (2.3) on a control volume Ωj , which is an interval in one dimensional

case or a rectangle in two dimensional cases, to obtain the semi-discrete finite volume scheme

as :
d

dt
UΩj

= − 1

|Ωj |

∫
∂Ωj

H(U) · nds, (2.4)

where |Ωj | is the volume of the control volume Ωj . The line integral in (2.4) is typically

discretized by a q-point Gaussian quadrature on each side of ∂Ωj =
∪S

s=1 Ωjs.∫
∂Ωj

H(U) · nds ≈
S∑

s=1

∣∣∣∂Ωjs

∣∣∣ q∑
l=1

ωlH(U(Gsl, t)) · n, (2.5)

whereGsl and ωl are Gaussian quadrature points and weights, respectively. The fluxH(U(Gsl, t))·
n at Gaussian quadrature point is replaced by a numerical flux (approximate or exact Riemann

solvers). For scalar equations the numerical flux can be taken as any of the monotone fluxes.

For example, one could use the simple Lax-Friedrichs flux, which is given by

H(U(Gsl, t)) · n

≈1

2

(
H(U−(Gsl, t)) +H(U+(Gsl, t))

)
· n− α

(
U+(Gsl, t)− U−(Gsl, t)

)
, (2.6)

where α is taken as an upper bound for the eigenvalues of the Jacobian in the n direction, and

U− and U+ are the values of u inside the volume Ωj and outside the volume Ωj at the Gaussian

point Gsl. The procedures of finite volume Hermite WENO reconstruction of U±(Gsl, t) in one-

dimensional and two-dimensional cases are given in detail in [14, 26], respectively. Finally, the

semi-discretization HWENO scheme (2.4) can be written in the following ODE form:

d

dt
UΩj = L(U)Ωj . (2.7)

High order strong stability preserving multi-step temporal discretization methods maintaining

essentially non-oscillatory property in (2.7) will be demonstrated in the following subsection.
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2.2. SSP multi-step temporal discretization for nonlinear problems

We briefly review the SSP theory for explicit multi-step methods which approximate the

solution of the ODE (2.7). For convenience, we rewrite (2.7) as

ut = L(u), (2.8)

with suitable initial conditions, where the spatial discretization L(u) is chosen so that

un+1 = un +∆tL(un), (2.9)

satisfies the strong stability requirement ∥un+1∥ ≤ ∥un∥ in some norm ∥ · ∥, under the CFL

condition

∆t ≤ ∆tFE(u
n). (2.10)

In [20], explicit TVD multi step methods:

un+1 =

k∑
j=0

(
αiu

n−j +∆tβjL(u
n−j)

)
, αj ≥ 0,

k∑
j=0

αj = 1 (2.11)

are conveniently easy to manipulate into convex combinations of forward Euler steps. Just as

in the Shu-Osher representation of Runge-Kutta schemes, since
∑

αj = 1, it follows that un+1

is given by a convex combination of forward Euler solvers, with suitably scaled ∆t’s. So such

multi-step methods have the TVD property.

Some multi-step methods were proven optimal in [6]. For instance

un+1 =
16

27

(
un + 3∆tL(un)

)
+

11

27

(
un−3 +

12

11
∆tL(un−3)

)
(2.12)

with the CFL coefficient c = 1
3 . However, adding steps increases the CFL number, without

requiring additional computation, only additional storage. For example,

un+1 =
25

32
un +

25

16
∆tL(un) +

7

32
un−4 +

5

16
∆tL(un−4), (2.13)

un+1 =
108

125
un +

36

25
∆tL(un) +

17

125
un−5 +

6

25
∆tL(un−5), (2.14)

though not proven optimal, increase the CFL to c=1/2 and c=0.567, respectively.

For hyperbolic conservation law, in order to keep the stability of numerical methods, the

time step ∆t is controlled by CFL condition, that is ∆t = CFL∆x/C, where C is the maximum

speed of wave which is depended on the solution at tn. The maximum speed of wave is usual

variable according to tn, that is time step is variable. We will generalize high order SSP multi-

step methods to nonuniform temporal step version in the next subsection.

2.2.1. A class of multi-step with variable time step and SSP discretization

Similar to (2.11), we define (k+1)-step finite difference method with variable time step for the

first order ODE (2.8) as:

un+1 =
k∑

j=0

(
αj(tn+1, · · · , tn−k)u

n−j + βj(tn+1, · · · , tn−k)L(u
n−j)

)
, (2.15)
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with

|αk(tn+1, · · · , tn−k)|+ |βk(tn+1, · · · , tn−k)| > 0,

where tn are temporal grid points and ∆tn−1 = tn − tn−1, n = 1, 2, · · · are temporal steps.

We define the truncation error T [u(tn)] of the method (2.15)

T [u(tn)] = u(tn+1)−
k∑

j=0

(
αj(tn+1, · · · , tn−k)u(tn−j) + βj(tn+1, · · · , tn−k)L(u(tn−j))

)
. (2.16)

If we assume that u is sufficiently smooth, use Taylor expand we have

T [u(tn)] = c0u(tn) + c1u
(1)(tn) + · · ·+ cqu

(q)(tn) + · · · ,

where

c0 = 1− (α0 + α1 + · · ·+ αk),

c1 = (tn+1 − tn)−
k∑

j=1

αj(tn)(tn−j − tn)−
k∑

j=0

βj(tn),

· · · · · ·

cq =
1

q!

(
(tn+1 − tn)

q −
k∑

j=1

αj(tn)(tn−j − tn)
q

)
− 1

(q − 1)!

k∑
j=0

βj(tn)(tn−j − tn)
q−1.

If u(t) ∈ Cp+1(I), we choose k and αj , βj , such that c0 = c1 = · · · = cp = 0 and cp+1 ̸= 0,

we obtain

T [u(tn)] = cp+1u
(p+1)(tn) +O(hp+2),

where h = maxni=1(ti − ti−1), then the method (2.15) is called as a linear p-order (k+1)-step

method.

2.2.2. A optimal three order variable step size SSP multi-step method

We generalize the third order SSP multi-step method (2.12) to a nonuniform temporal step 3-

order 4-step method. In order to keep SSP (strong stability preserving) property, the parameters

α0, α1, α2, α3, β0, β1, β2, β3 should satisfy:

α0 + α1 + α2 + α3 = 1, (2.17a)
3∑

j=1

αj(tn−j − tn)−
3∑

j=0

βj = tn+1 − tn, (2.17b)

1

2

3∑
j=1

αj(tn−j − tn)
2 −

3∑
j=0

βj(tn−j − tn) =
1

2
(tn+1 − tn)

2, (2.17c)

1

6

3∑
j=1

αj(tn−j − tn)
3 − 1

2

3∑
j=0

βj(tn−j − tn)
2 =

1

6
(tn+1 − tn)

3. (2.17d)

Letting α1 = α2 = β1 = β2 = 0, we solve α0, α3, β0, β3 from the system (2.17) to get

un+1 =
t3n−3 − 3tn−3t

2
n+1 − 3t2n−3tn + 6tntn−3tn+1 − 3tnt

2
n+1 + 2t3n+1

(tn−3 − tn)3
un
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−
t2n−3tn − t2n−3tn+1 + 2tn−3t

2
n+1 − 2tntn−3tn+1 + tnt

2
n+1 − t3n+1

(tn−3 − tn)2
L(un)

+
3tn−3t

2
n − t3n + 3tn−3t

2
n+1 − 6tntn−3tn+1 + 3tnt

2
n+1 − 2t3n+1

(tn−3 − tn)3
un−3

−
tn−3t

2
n+1 + tn−3t

2
n − 2tntn−3tn+1 − t2ntn+1 − t3n+1 + 2tnt

2
n+1

(tn−3 − tn)2
L(un−3).

Let h1 = ∆tn−3, h2 = ∆tn−2, h3 = ∆tn−1, h4 = ∆tn, and λ2 = h2

h1
, λ3 = h3

h1
, λ4 = h4

h1
. We

obtain

un+1 =
(1 + λ2 + λ3 − 2λ4)(1 + λ2 + λ3 + λ4)

2

(1 + λ2 + λ3)3
un +

(1 + λ2 + λ3 + λ4)
2

(1 + λ2 + λ3)2
h4L(u

n)

+
λ2
4(3 + 3λ2 + 3λ3 + 2λ4)

(1 + λ2 + λ3)3
un−3 +

λ4(1 + λ2 + λ3 + λ4)

(1 + λ2 + λ3)2
h4L(u

n−3). (2.18)

We rewrite (2.18) as:

un+1 = α0(λ2, λ3, λ4)u
n + γ0(λ2, λ3, λ4)h4L(u

n) + α3(λ2, λ3, λ4)u
n−3

+ γ3(λ2, λ3, λ4)h4L(u
n−3). (2.19)

with

α0(λ2, λ3, λ4) =
(1 + λ2 + λ3 − 2λ4)(1 + λ2 + λ3 + λ4)

2

(1 + λ2 + λ3)3
,

γ0(λ2, λ3, λ4) =
(1 + λ2 + λ3 + λ4)

2

(1 + λ2 + λ3)2
,

α3(λ2, λ3, λ4) =
λ2
4(3 + 3λ2 + 3λ3 + 2λ4)

(1 + λ2 + λ3)3
,

γ3(λ2, λ3, λ4) =
λ4(1 + λ2 + λ3 + λ4)

(1 + λ2 + λ3)2
.

Proposition 2.1. If the forward Euler method combined with the spatial discretization L in

(2.9) is strongly stable under the CFL restriction (2.10),

∥un +∆tnL(u
n)∥ ≤ ∥un∥

and λ4 ∈ (0, 1+λ2+λ3

2 ), then the multi-step method (2.19) satisfies

∥un+1∥ ≤ max{(∥un∥) ,
(
∥un−3∥

)
},

under the CFL restriction

∆tn ≤ min

{
α0

γ0
∆tFE(u

n),
α3

γ3
∆tFE(u

n−3)

}
. (2.20)

Proof. For convenience, we write (2.19) as

un+1 = α0

(
un +

γ0
α0

∆tnL(u
n)

)
+ α3

(
un−3 +

γ3
α3

∆tnL(u
n−3)

)
. (2.21)
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Since λ4 ∈ (0, 1+λ2+λ3

2 ), all coefficients α0, γ0, α3 and γ3 are greater than 0. Under the CFL

restriction (2.20), we have the CFL restriction

0 <
γ0
α0

∆tn ≤ tFE(u
n), 0 <

γ3
α3

∆tn ≤ tFE(u
n−3). (2.22)

Then we obtain the following results under CFL restriction (2.22),∥∥∥∥un +
γ0
α0

∆tnL(u
n)

∥∥∥∥ ≤
∥∥∥∥un∥, ∥un−3 +

γ3
α3

∆tnL(u
n−3)

∥∥∥∥ ≤ ∥un−3∥.

Let α1 = 0 and α2 = 0. Then α0 + α3 = 1. From (2.21) we have

∥un+1∥ ≤α0

(
∥un +

γ0
α0

∆tnL(u
n)∥

)
+ α3

(
∥un−3 +

γ3
α3

∆tnL(u
n−3)∥

)
≤α0 (∥un∥) + α3

(
∥un−3∥

)
≤max{(∥un∥) ,

(
∥un−3∥

)
}.

Hence the proposition is proved. �

Remark 2.1. In order to choose time step ∆tn such that

∆tn = min

{
α0

γ0
∆tFE(u

n),
α3

γ3
∆tFE(u

n−3)

}
.

Let ∆t′FE = min{∆tFE(u
n),∆tFE(u

n−3)}. Then we solve ∆tn by ∆tn
∆t′FE

= min{α0

γ0
, α3

γ3
}, i.e.

solving λ4 from

λ4
∆tn−3

∆t′FE

= min

{
α0(λ4)

γ0(λ4)
,

α3(λ4)

γ3(λ4)

}
. (2.23)

Obviously, such ∆tn satisfy (2.20) since

∆tn = min

{
α0

γ0
∆t′FE ,

α3

γ3
∆t′FE

}
≤ min

{
α0

γ0
∆tFE(u

n),
α3

γ3
∆tFE(u

n−3)

}
.

The λ4 can be determined by (2.23). For implementation convenience, we borrow the CFL

number from (2.12) and choose a smaller CFL to design ∆tn = CFL∆tFE(u
n) = CFL∆x/C

(un), where C(un) is the maximum speed of wave at time tn in this paper, because this propo-

sition generalizes the results of (2.12). Our numerical experiments in this paper show such time

size ∆tn works well.

Remark 2.2. We can generalize scheme (2.13)-(2.14) to a nonuniform temporal step version,

respectively.

un+1 =
(1 + λ2 + λ3 + λ4 − 2λ5)(1 + λ2 + λ3 + λ4 + λ5)

2

(1 + λ2 + λ3 + λ4)3
un

+
(1 + λ2 + λ3 + λ4 + λ5)

2

(1 + λ2 + λ3 + λ4)2
h5L(u

n) +
λ2
5(3 + 3λ2 + 3λ3 + 3λ4 + 2λ5)

(1 + λ2 + λ3 + λ4)3
un−4

+
λ5(1 + λ2 + λ3 + λ4 + λ5)

(1 + λ2 + λ3 + λ4)2
h5L(u

n−4), (2.24)
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where h1 = ∆tn−3, h2 = ∆tn−2, h3 = ∆tn−1, h4 = ∆tn, h5 = ∆tn+1, and λ2 = h2

h1
, λ3 =

h3

h1
, λ4 = h4

h1
, λ5 = h5

h1
. Moreover,

un+1 =
(1 + λ2 + λ3 + λ4 + λ5 − 2λ6)(1 + λ2 + λ3 + λ4 + λ5 + λ6)

2

(1 + λ2 + λ3 + λ4 + λ5)3
un

+
(1 + λ2 + λ3 + λ4 + λ5 + λ6)

2

(1 + λ2 + λ3 + λ4 + λ5)2
h6L(u

n) +
λ2
6(3 + 3λ2 + 3λ3 + 3λ4 + 3λ5 + 2λ6)

(1 + λ2 + λ3 + λ4 + λ5)3
un−5

+
λ6(1 + λ2 + λ3 + λ4 + λ5 + λ6)

(1 + λ2 + λ3 + λ4 + λ5)2
h6L(u

n−5), (2.25)

where h1 = ∆tn−4, h2 = ∆tn−3, h3 = ∆tn−2, h4 = ∆tn−1, h5 = ∆tn, h6 = ∆tn+1, and

λ2 = h2

h1
, λ3 = h3

h1
, λ4 = h4

h1
, λ5 = h5

h1
, λ6 = h6

h1
.

Remark 2.3. For multi-step method, we require that the starting procedure to be the same

accuracy as multi-step method and also be strong stability preserving. For example, we can

use the following third order SSP Runge-Kutta method [21] to compute the starting steps with

suitable reduced time steps.

u(1) = un +∆tL(un), (2.26a)

u(2) =
3

4
un +

1

4

(
u(1) +∆tL(u(1))

)
, (2.26b)

un+1 =
1

3
un +

2

3

(
u(2) +∆tL(u(2))

)
. (2.26c)

3. Numerical Results

In this section, we perform numerical experiments to test the performance of the fifth-order

HWENO schemes with the third-order multi-step method (HWENO5-multi3), and compare

the results with that of the fifth-order HWENO schemes with the third order SSP Runge-

Kutta temporal discretization (HWENO5-RK3) for one-dimensional conservation laws. For

two-dimensional conservation laws, we present the results of our numerical experiments for the

fourth-order HWENO schemes with the third-order multi-step method (HWENO4-multi3), and

compare the results with that of the fourth-order HWENO schemes with the third order SSP

Runge-Kutta temporal discretization (HWENO4-RK3).

For CPU time comparison, the computations of one-dimensional tests are performed on a

personal computer, Intel(R) Core (TM) i3-2310M CPU @ 2.10 GHz with 2.00 GB ram, while

the computations of two-dimensional tests are performed on a cluster, Intel(R) Xeon(R) CPU

E5405@ 2.00GHz. A uniform mesh with N cells is used for all the test cases, the CFL number

is taken as 0.3 for HWENO5-multi3 and 0.2 for HWENO4-multi3, and 0.8 for HWENO5-RK3

and 0.6 for HWENO4-RK3.

3.1. One-dimensional test cases

Example 3.1. We solve the linear convection equation

ut + ux = 0, (3.1)

with initial condition u0(x) and periodic boundary conditions.
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Table 3.1: HWENO5-multi3 and HWENO5-RK3, for the linear equation with initial data u0(x). ∆x =
1
N

and ∆t = CFL∆x
5
3 .

N
HWENO5-multi3 HWENO5-RK3

L1 error Order L∞ error Order L1 error Order L∞ error Order

u0(x) = 0.5 + sin(2πx)

10 1.58E-02 2.48E-02 1.58E-02 2.47E-02

20 5.93E-04 4.73 1.14E-03 4.44 5.91E-04 4.74 1.14E-03 4.44

40 1.76E-05 5.08 3.39E-05 5.08 1.75E-05 5.07 3.38E-05 5.08

80 5.42E-07 5.02 1.09E-06 4.96 5.41E-07 5.02 1.09E-06 4.95

160 1.69E-08 5.01 3.29E-08 5.05 1.68E-08 5.01 3.28E-08 5.05

320 5.26E-10 5.00 9.77E-10 5.07 5.24E-10 5.00 9.73E-10 5.08

u0(x) = 0.5 + sin4(2πx)

10 2.17E-01 3.23E-01 2.16E-01 3.23E-01

20 4.60E-02 2.24 9.59E-02 1.75 4.58E-02 2.24 9.53E-02 1.76

40 3.74E-03 3.62 7.99E-03 3.59 3.73E-03 3.62 7.96E-03 3.58

80 3.94E-04 3.24 1.47E-03 2.44 3.91E-04 3.25 1.46E-03 2.44

160 1.20E-05 5.04 6.12E-05 4.59 1.19E-05 5.04 6.08E-05 4.59

320 3.09E-07 5.28 1.50E-06 5.35 3.06E-07 5.28 1.49E-06 5.35

u0(x) = 0.5 + sin8(2πx)

10 2.18E-01 3.21E-01 2.17E-01 3.21E-01

20 9.08E-02 1.26 2.65E-01 0.28 9.05E-02 1.26 2.64E-01 0.28

40 1.06E-02 3.09 3.49E-02 2.93 1.06E-02 3.10 3.46E-02 2.93

80 9.65E-04 3.46 2.34E-03 3.90 9.56E-04 3.46 2.32E-03 3.90

160 3.41E-05 4.82 1.05E-04 4.48 3.38E-05 4.82 1.04E-04 4.48

320 1.09E-06 4.96 3.74E-06 4.81 1.08E-06 4.96 3.71E-06 4.81

Three smooth initial conditions u0(x) = 0.5+sin(2πx), u0(x) = 0.5+sin4(2πx) and u0(x) =

0.5+ sin8(2πx) are used to show the accuracy, the computational domain is [0, 1] with periodic

boundary conditions. In Table 3.1, the L1 and L∞ error for the cell averages at time t = 1.0

by HWENO5-multi3 and HWENO5-RK3 methods are shown for comparison, respectively. In

this example we take ∆t = O
(
∆x

5
3

)
for the purpose to guarantee that spatial error dominates,

and we can see that both schemes achieve their designed accuracy order.

Another accuracy tests of the finite volume HWENO scheme with maximum-principle-

preserving (MPP) limiter which refers to [2] for details are shown in Table 3.2. The accuracy of

HWENO5-RK3 with MPP limiter degenerates clearly in very refined mesh, while the normal

order was observed in HWENO5-multi3 with MPP limiter. To see how many MPP limiters

were actually used in this example, we recorded the number of cells where the MPP limiter

was activated. We list the average percentage of the limited cells in each stage in HWENO-

RK3 and that of the limited cells in each time step in HWENO-multi3. The less percentage of

HWENO-multi3 is observed, compared with that of HWENO-RK3.

Example 3.2. We solve the Burgers’ equation

ut +

(
u2

2

)
x

= 0 (3.2)

with the initial condition u(x, 0) = 0.5 + sin(πx),and a 2-periodic boundary condition. When

t = 0.5/π the solution is still smooth.
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Table 3.2: HWENO5-multi3 and HWENO5-RK3 with MPP limiter, for the linear equation with initial

data u0(x) = 0.5 + sin(2πx). ∆x = 1
N

and ∆t = CFL∆x
5
3 . t = 0.1. L1 and L∞ error.

HWENO5-multi3 with MPP limiter

N L1 error Order L∞ error Order umin umax limited (%)

20 6.47E-05 1.11E-04 -0.5 1.5 14.00

40 1.84E-06 5.14 3.58E-06 4.96 -0.5 1.5 8.55

80 5.52E-08 5.06 1.13E-07 4.98 -0.5 1.5 3.41

160 1.69E-09 5.03 3.44E-09 5.04 -0.5 1.5 1.01

320 5.26E-11 5.01 9.64E-11 5.16 -0.5 1.5 0.00

HWENO5-RK3 with MPP limiter

N L1 error Order L∞ error Order umin umax limited (%)

20 5.97E-05 1.20E-04 -0.5 1.5 16.5

40 1.77E-06 5.08 4.42E-06 4.76 -0.5 1.5 8.93

80 6.81E-08 4.70 4.84E-07 3.19 -0.5 1.5 4.73

160 2.99E-09 4.51 4.92E-08 3.30 -0.5 1.5 2.43

320 1.39E-10 4.43 4.75E-09 3.37 -0.5 1.5 1.23

Table 3.3: HWENO5-multi3 and HWENO5-Rk3. Burgers’ equation ut + (u2/2)x = 0 with the initial

condition u(x, 0) = 0.5 + sin(πx) ,t = 0.5/π. L1 and L∞ errors. Uniform meshes with N cells.

N
HWENO5-multi3 HWENO5-RK3

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 4.89E-03 1.77E-02 5.06E-03 1.79E-02

20 4.93E-04 3.31 3.34E-03 2.41 4.93E-04 3.36 3.33E-03 2.43

40 3.65E-05 3.76 3.25E-04 3.36 3.65E-05 3.76 3.24E-04 3.36

80 1.61E-06 4.50 1.51E-05 4.43 1.61E-06 4.51 1.51E-05 4.43

160 6.25E-08 4.68 5.49E-07 4.78 6.25E-08 4.68 5.49E-07 4.78

320 1.86E-09 5.07 2.06E-08 4.74 1.86E-09 5.07 2.06E-08 4.74

In Table 3.3, the L1 and L∞ error for the cell averages at time t = 0.5/π by HWENO5-

multi3 and HWENO5-RK3 are displayed for comparison. We can see that the fifth order are

achieved for both HWENO5-multi3 and HWENO5-RK3 schemes, and they produce similar

numerical errors and orders of accuracy.

In Fig. 3.1, we give the L1 and L∞ numerical errors for (3.2) and CPU time when space

points numbers are N = 20, 40, 80, 160, 320. We can see that the efficiency of HWENO5-multi3

is similar to that of HWENO5-RK3.

Example 3.3. We solve the following nonlinear system of Euler equations

ut + f (u)x = 0 (3.3)

with

u = (ρ, ρv, E)
T
, f (u) =

(
ρv, ρv2 + p, v (E + p)

)T
.

Here ρ is the density, v is the velocity, E is the total energy, p is the pressure, which is related

to total energy by E = p/(γ − 1) + 1/2ρv2 with γ = 1.4. The initial condition is set to be

ρ(x, 0) = 1 + 0.2 sin(πx), v(x, 0) = 1, p(x, 0) = 1, with a 2-periodic boundary condition. The

exact solution is ρ(x, t) = 1+ 0.2 sin(π(x− t)), v(x, t) = 1, p(x, t) = 1. We compute the solution
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Fig. 3.1. Numerical errors and CPU time by HWENO5-multi3 and HWENO5-RK3 with N =

20, 40, 80, 160, 320 for the 1D Burgers’ equation. Left: L1 errors. Right: L∞ errors.

up to t = 2. The errors and numerical orders of accuracy of the density ρ for the HWENO5-

multi3 and HWENO5-RK3 schemes are shown in Table 3.4. We can see that both scheme

achieve their designed order of accuracy.

Table 3.4: HWENO5-multi3 and HWENO5-RK3 using N equally spaced cells. Euler equations.

ρ(x, 0) = 1 + 0.2 sin(πx), v(x, 0) = 1, p(x, 0) = 1. t = 2. L1 and L∞ errors of density ρ.

N
HWENO5-multi3 HWENO5-RK3

L1 error Order L∞ error Order L1 error Order L∞ error Order

10 3.12E-03 4.94E-03 3.13E-03 4.94E-03

20 1.17E-04 4.73 2.27E-04 4.44 1.17E-04 4.73 2.27E-04 4.44

40 3.47E-06 5.08 6.68E-06 5.08 3.47E-06 5.08 6.69E-06 5.08

80 1.07E-07 5.02 2.11E-07 4.98 1.07E-07 5.02 2.11E-07 4.98

160 3.28E-09 5.02 5.94E-09 5.15 3.29E-09 5.02 5.94E-09 5.15

320 9.83E-11 5.06 1.68E-10 5.14 9.84E-11 5.06 1.69E-10 5.14

In Fig. 3.2, we give the L1 and L∞ numerical errors for (3.3) and CPU time when space

points numbers are N = 10, 20, 40, 80, 160, 320. We can see that the efficiency of HWENO5-

multi3 is similar to that of HWENO5-RK3.

Example 3.4. We solve the same nonlinear Burgers equation (3.2) as in Example 3.2 with the

same initial condition u(x, 0) = 0.5 + sin(πx), except that we now plot the results at t = 1.5
π

when a shock has already appeared in the solution. In Fig. 3.3, the solutions of HWENO5-

multi3 and HWENO-RK3 with N=80 cells are shown. The solid line is the exact solution. We

can see that both schemes give nonoscillatory shock transitions for this problem.

Example 3.5. We solve the nonlinear non-convex scalar Buckley-Leverett problem

ut +

(
4u2

4u2 + (1− u)2

)
x

= 0 (3.4)
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Fig. 3.2. Numerical errors and CPU time by HWENO5-multi3 and HWENO5-RK3 with N =

10, 20, 40, 80, 160, 320 for the 1D Euler equations order test. Left: L1 errors. Right: L∞ errors.
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Fig. 3.3. Example 3.4 with N=80 cells. Solid line: exact solution; Squares: computed solution of

HWENO5-multi3; Pluses: computed solution of HWENO5-RK3.

with the initial data u = 1 when −1
2 ≤ x ≤ 0 and u = 0 elsewhere. The solution is computed up

to t = 0.4. The exact solution is a shock-rarefaction-contact discontinuity mixture. In Fig. 3.4,

The solutions of HWENO5-multi3 and HWENO-RK3 with N = 80 cells are shown. The solid

line is the exact solution. We can see that both schemes give good resolution to the correct

entropy solution for this problem.

Example 3.6. We solve the Euler equations (3.3) with a Riemann initial condition for the Lax

Problem

(ρ, v, p) = (0.445, 0.698, 3.528) for x ≤ 0, (ρ, v, p) = (0.5, 0, 0.571) for x > 0.

The computed density ρ is plotted at t = 1.3 against the exact solution. In Fig. 3.5 we plot

the solutions with N = 200 cells by HWENO5-multi3 scheme and HWENO5-RK3 scheme. We

also also show the variable time step. We can see that both schemes give good non-oscillatory

shock transitions for this problem.

Example 3.7. The previous examples contain only shocks and simple smooth region solutions

(almost piecewise linear), for which shock resolution is the main concern and usually a good
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Fig. 3.4. The Buckley-Leverett problem. t = 0.4, N = 80 cells. Solid line: exact solution; Squares:
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solution of HWENO5-multi3; Pluses: computed solution of HWENO5-RK3. Right: time step.

second-order non-oscillatory scheme would give satisfactory results. There is little advantage

in using higher order schemes for such cases. We have been using them in the numerical

experiments mainly to demonstrate the non-oscillatory properties of the high order schemes.

A higher order scheme would show its advantage when the solution contains both shocks and

complex smooth region structures. A typical example for this is the problem of shock interaction

with entropy waves [22]. We solve the Euler equation (3.3) with a moving Mach=3 shock

interacting with sine waves in density, i.e. initially

(ρ, v, p) = (3.857143, 2.629369, 10.333333) for x < −4,

(ρ, v, p) = (1 + ε sin(5x), 0, 1) for x ≥ −4.

Here we take ε = 0.2. The computed density ρ is plotted at t = 1.8 against the reference

solution, which is a converged solution computed by the fifth-order finite difference WENO
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Fig. 3.6. The shock density wave interaction problem. t = 1.8, N = 300 cells. Density ρ. Solid

line: “exact solution”; Squares: computed solution of HWENO5-multi3; Pluses: computed solution of

HWENO5-RK3.

scheme [9] with 2000 grid points. In Fig. 3.6 we show the results of the HWENO5-multi3 scheme

and the HWENO5-RK3 scheme with N = 300 cells. We can also see that the computational

result by HWENO5-multi3 is similar to that by HWENO5-RK3.
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Fig. 3.7. The interaction of blast waves problem, 400 cells, t = 0.038, Density ρ. Solid line: “exact

solution”; Squares: computed solution of HWENO5-multi3; Pluses: computed solution of HWENO5-

RK3.

Example 3.8. We consider the interaction of blast waves of Euler equation (2.21) with the

initial condition

(ρ, v, p) = (1, 0, 1000) for 0 ≤ x < 0.1,

(ρ, v, p) = (1, 0, 0.01) for 0.1 ≤ x < 0.9,

(ρ, v, p) = (1, 0, 100) for 0.9 ≤ x.
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Table 3.5: Example 3.9 with T = 0.5/π. L1and L∞ errors.

N
HWENO4-multi3 HWENO4-RK3

L1 error Order L∞ error Order L1 error Order L∞ error Order

10×10 4.98E-03 1.42E-02 5.10E-03 1.44E-02

20×20 8.46E-04 2.56 3.66E-03 1.96 8.53E-04 2.58 3.67E-03 1.97

40×40 5.98E-05 3.82 4.39E-04 3.06 5.97E-05 3.84 4.36E-04 3.07

80×80 3.42E-06 4.13 3.41E-05 3.69 3.42E-06 4.13 3.45E-05 3.66

160×160 2.09E-07 4.03 3.36E-06 3.35 2.09E-07 4.03 3.38E-06 3.35

320×320 1.07E-08 4.28 2.02E-07 4.06 1.08E-08 4.28 2.02E-07 4.06

A reflecting boundary condition is applied to both ends. See [8,24]. The computed density

ρ is plotted at t = 0.038 against the reference “exact” solution, which is a converged solution

computed by the fifth-order finite difference WENO scheme [9] with 2000 grid points. In Fig.

3.7 we show the results of the HWENO5-multi3 scheme and the HWENO5-RK3 scheme with

300 cells. We can also see that the computational result by HWENO5-multi3 is similar to that

by HWENO5-RK3.

3.2. Two-dimensional test cases

Example 3.9. We solve the following nonlinear scalar Burger’s equation in two dimensions:

ut +

(
u2

2

)
x

+

(
u2

2

)
y

= 0 (3.5)

with the initial condition u(x, y, 0) = 0.5+sin(π(x+y)/2) and a 4-periodic boundary condition

in two directions. When t = 0.5/π, the solution is still smooth. The errors and numerical orders

of accuracy for the HWENO4-multi3 and HWENO5-RK3 are shown in Table 3.5. We can see

that the designed order is obtained.

In Fig. 3.8, we give the L1 and L∞ numerical errors for (3.5) and CPU time when space

points numbers are N = 10, 20, 40, 80, 160, 320. We can see that the efficiency of HWENO4-

multi3 is similar to that of HWENO4-RK3.

Fig. 3.8. HWENO4-multi3 and HWENO4-RK3 with N = 10, 20, 40, 80, 160, 320 for the 2D Burgers’

equation order test. Left: L1 errors. Right: L∞ errors.
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Table 3.6: 2D Euler equations: initial data ρ(x, y, 0) = 1+0.2 sin(π(x+y)), u(x, y, 0) = 0.7, v(x, y, 0) =

0.3, p(x, y, 0) = 1. Periodic boundary conditions in two directions. T = 2.0. L1 and L∞ errors.

cells
HWENO4-multi3 HWENO4-RK3

L1 error Order L∞ error Order L1 error Order L∞ error Order

10× 10 1.35E-02 2.31E-02 1.35E-02 2.31E-02

20× 20 7.29E-04 4.21 1.45E-03 4.00 7.32E-04 4.21 1.45E-03 3.99

40× 40 2.56E-05 4.83 4.99E-05 4.86 2.60E-05 4.82 5.05E-05 4.84

80× 80 1.02E-06 4.65 1.78E-06 4.81 1.06E-06 4.61 1.86E-06 4.76

160× 160 4.91E-08 4.37 7.84E-08 4.51 5.39E-08 4.30 8.60E-08 4.44

320× 320 2.75E-09 4.16 4.41E-09 4.15 3.30E-09 4.03 5.27E-09 4.03

Example 3.10. We solve the Euler equations

∂

∂t


ρ

ρu

ρv

E

+
∂

∂x


ρu

ρu2 + p

ρuv

u(E + p)

+
∂

∂y


ρv

ρuv

ρv2 + p

v(E + p)

 = 0. (3.6)

In which ρ is density, u is x-direction velocity, v is y-direction velocity, E is total energy, p is

pressure. The initial conditions are: ρ(x, y, 0) = 1+0.2 sin(π(x+y)), u(x, y, 0) = 0.7, v(x, y, 0) =

0.3, p(x, y, 0) = 1, periodic boundary conditions in two directions. We compute the density

solution up to t = 2.0. The exact solution is ρ(x, y, 0) = 1 + 0.2 sin(π(x+ y − t)). In Table 3.6,

we show the errors and numerical orders of accuracy by HWENO4-multi3 and HWENO4-RK3

and we also can see that the designed order is obtained.

In Fig. 3.9, we give the L1 and L∞ numerical errors for (3.6) and CPU time when space

points numbers are N = 10, 20, 40, 80, 160, 320. We can see that the efficiency of HWENO4-

multi3 is similar to that of HWENO4-RK3.

Example 3.11. 2D Euler equations for Riemann problem [18]. We solve the Euler equations

Fig. 3.9. HWENO4-multi3 and HWENO4-RK3 withN = 10, 20, 40, 80, 160, 320 for the two-dimensional

Euler equations order test. Left: L1 errors. Right: L∞ errors.
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Fig. 3.10. 2D Euler equations for Riemann problem with 400×400 cells. Left: HWENO4-multi3;

Right: HWENO4-RK3. From top to bottom. Initial condition (1) T = 0.25. 30 equally spaced density

contours from 0.54 to 1.70; Initial condition (2) T = 0.25. 30 equally spaced density contours from 0.50

to 1.96; Initial condition (3) T = 0.3. 30 equally spaced density from contours 0.55 to 1.22.

(3.6) in a computational domain of [0, 1]× [0, 1] and set the initial conditions as:

(1) (ρ, u, v, p)T =


(0.5313, 0, 0, 0.4)T , x > 0.5, y > 0.5,

(1, 0.7276, 0, 1)T , x < 0.5, y > 0.5,

(0.8, 0, 0, 1)T , x < 0.5, y < 0.5,

(1, 0, 0.7276, 1)T , x > 0.5, y < 0.5,

(2) (ρ, u, v, p)T =


(1.1, 0, 0, 1.1)T , x > 0.5, y > 0.5,

(0.5065, 0.8939, 0, 0.35)T , x < 0.5, y > 0.5,

(1.1, 0.8939, 0.8939, 1.1)T , x < 0.5, y < 0.5,

(0.5065, 0, 0.8939, 0.35)T , x > 0.5, y < 0.5,
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Fig. 3.11. 2D Euler equations for Riemann problem with 400×400 cells. Left: HWENO4-multi3; Right:

HWENO4-RK3. From top to bottom. Initial condition (4) T = 0.2. 30 equally spaced density contours

from 0.52 to 0.99; Initial condition (5) T = 0.3. 30 equally spaced density contours from 0.25 to 3.05.

(3) (ρ, u, v, p)T =


(1, 0.1, 0, 1)T , x > 0.5, y > 0.5,

(0.5313, 0.8276, 0, 0.4)T , x < 0.5, y > 0.5,

(0.8, 0.1, 0, 0.4)T , x < 0.5, y < 0.5,

(0.5313, 0.1, 0.7276, 0.4)T , x < 0.5, y < 0.5,

(4) (ρ, u, v, p)T =


(0.5313, 0.1, 0.1, 0.4)T , x > 0.5, y > 0.5,

(1.0222,−0.6179, 0.1, 1)T , x < 0.5, y > 0.5,

(0.8, 0.1, 0.1, 1)T , x < 0.5, y < 0.5,

(1, 0.1, 0.8276, 1)T , x > 0.5, y < 0.5,

(5) (ρ, u, v, p)T =


(1, 0.75, .0.5, 1)T , x > 0.5, y > 0.5,

(2, 0.75, 0.5, 1)T , x < 0.5, y > 0.5,

(1,−0.75, 0.5, 1)T , x < 0.5, y < 0.5,

(3,−0.75, .0.5, 1)T , x > 0.5, y < 0.5.

In the Figs. 3.10- 3.11 the computational densities by HWENO4-multi3; Right: HWENO4-

RK3 schemes for the Riemann problems are shown. We can observe that most of the flow

features are captured well for all these Riemann problems.

Example 3.12. Double mach reflection problem. We solve the Euler equations (3.6) in a

computational domain of [0, 4] × [0, 1]. A reflection wall lies at the bottom of the domain

starting from x = 1
6 , y = 0, making a 60◦ angle with the x-axis. The reflection boundary
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Fig. 3.12. Double Mach refection problem, 30 equally spaced density contours from 1.5 to 22.7,

2400×600.HWENO4-multi3 (Top), HWENO4-RK3 (Bottom).
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Fig. 3.13. Zoom-in pictures around the Mach stem for Double Mach refection problem, 30 equally

spaced density contours from 1.5 to 22.7, 2400×600, HWENO4-multi3 (Left) and HWENO4-RK3

(Right).

condition is used at the wall, which for the rest of the bottom boundary (the part from x = 0 to

x = 6), the exact post-shock condition is imposed. At the top boundary is the exact motion of

the mach 10 shock. The results shown of HWENO4-multi3 with h = 1
200 and HWENO4-RK3

with h = 1
200 [26] are at t = 0.2. We present both the pictures of region [0, 3] × [0, 1] and
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Fig. 3.14. A mach 3 wind tunnel with a step problem, 30 equally spaced density contours from 0.32 to

6.15, 1200×400 cells. HWENO4-multi3 (Top), HWENO4-RK3 (Bottom).

the blow-up region around the double mach stems in Figs. 3.12 and 3.13 respectively. All the

pictures are the density contours with 30 equal spaced contour lines from 1.5 to 22.7. It is clear

that HWENO4-multi3 with h = 1
200 has qualitatively the similar resolution as HWENO4-RK3

with h = 1
200 for the fine details of the complicated structure in this blown-up region.

Example 3.13. A mach 3 wind tunnel with a step. The setup of the problem is as follows: the

wind tunnel is 1 length unit wide and 3 length units long. The step is 0.2 length units high and

is located 0.6 length units from the left end of the tunnel. Initially, a right going mach 3 flow

is used. Reflective boundary conditions are applied alone the walls of the tunnel and in flow

and out flow boundary conditions are applied at the entrance and the exit. The computational

densities by HWENO4-multi3 and HWENO4-RK3 schemes are plotted at t = 4.0 in Fig. 3.14

with 30 equally spaced density contours from 0.32 to 6.3. We can observe that most of the flow

features are captured well by both HWENO4-multi3 and HWENO4-RK3 schemes.

4. Concluding Remarks

In this paper, we construct a class of variable step size multi-step type SSP high order

temporal discretization, and we simulate the one-dimensional and two-dimensional hyperbolic

conservation laws by high resolution finite volume HWENO schemes with SSP multi-step meth-

ods. We compare the numerical results with those obtained by finite volume HWENO schemes

using the third-order SSP Runge-Kutta temporal discretization by addressing CPU time, ef-

ficiency and resolution. We can see that both methods have similar CPU time, efficiency,

resolution and non spurious oscillatory numerical solutions.
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