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Abstract

A cascadic multigrid method is proposed for eigenvalue problems based on the multilevel

correction scheme. With this new scheme, an eigenvalue problem on the finest space can be

solved by linear smoothing steps on a series of multilevel finite element spaces and nonlinear

correcting steps on special coarsest spaces. Once the sequence of finite element spaces and

the number of smoothing steps are appropriately chosen, the optimal convergence rate

with the optimal computational work can be obtained. Some numerical experiments are

presented to validate our theoretical analysis.
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1. Introduction

The cascadic multigrid method proposed by [4,6] and analyzed by [17] is based on a hierarchy

of nested meshes. Going from the coarsest level to the finest one, in each level, the discrete

approximation obtained from the previous level acts as the starting value of a simple iterative

solver (a smoother) like conjugate gradient. It is well known that for some certain linear systems

(e.g., descretized by finite element method), a smoother can not eliminate the error effectively,

and the part of error hard to be reduced is called algebraic error, which has been motivating the

research on multigrid method. Therefore, to achieve the desired accuracy, the algebraic error on

each level must be small enough. In cascadic multigrid method, this is achieved by increasing

the number of smoothing iteration steps on coarser levels. Fortunately, the smaller dimensions

of the problems on the coarser levels lead to the optimality of the complete algorithm. Requiring

the number of operations which is proportional to the number of unknowns on the finest level,

the algebraic error of the final approximation solution is of the same order as the discretization

error of the finite element method. For more information about the cascadic multigrid method,

please refer to [4, 6, 11,17,18,20] and the references cited therein.
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In modern science and engineer, eigenvalue problems appear in many fields such as Physics,

Chemistry, mechanics and material sciences. Recently, a type of multilevel correction method

is proposed to solve eigenvalue problems in [13, 22]. In this multilevel correction scheme, the

solution of eigenvalue problem on the final level mesh can be reduced to a series of solutions of

boundary value problems on the multilevel meshes and a series of solutions of the eigenvalue

problem on the coarsest mesh. Then it is natural to use the efficient linear solvers such as

multigrid method and algebraic multigrid method to design the corresponding efficient eigen-

value solvers. It is well known that the cascadic multigrid method is simple and easy to be

implemented. Therefore, the aim of this paper is to construct a cascadic multigrid method

to solve the eigenvalue problem by transforming the eigenvalue problem solving to a series of

smoothing iteration steps on the sequence of meshes and eigenvalue problem solving on the

coarsest mesh by the multilevel correction method. Similarly to the cascadic multigrid for the

boundary value problem, we also only do the smoothing steps for a boundary value problem by

using the previous eigenpair approximation as the start value. As same as the cascadic multi-

grid method for boundary value problems, the numbers of smoothing iteration steps need to be

increased in the coarse levels. The final eigenpair approximation has the same order algebraic

error as the discretization error of the finite element method by organizing the suitable number

of smoothing iteration steps on different levels. The original version of this paper is [9]. After

that, there also have appeared a different cascadic multigrid method in [19] which is based on

the shifted-inverse power iteration [8, 10,16].

The rest of this paper is organized as follows. In the next section, we introduce the finite

element method for the eigenvalue problem and the corresponding error estimates. A cascadic

multigrid method for eigenvalue problem based on the multilevel correction scheme is presented

and analyzed in Section 3. In Section 4, three numerical examples are presented to validate our

theoretical analysis. Some concluding remarks are given in the last section.

2. Finite Element Method for Eigenvalue Problem

This section is devoted to introducing some notation and the finite element method for

the eigenvalue problem. In this paper, we shall use the standard notation for Sobolev spaces

W s,p(Ω) and their associated norms and semi-norms ([1]). For p = 2, we denote Hs(Ω) =

W s,2(Ω) and H1
0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, where v|Ω = 0 is in the sense of trace,

∥ · ∥s,Ω = ∥ · ∥s,2,Ω. In some places, ∥ · ∥s,2,Ω should be viewed as piecewise defined if it

is necessary. The letter C (with or without subscripts) denotes a generic positive constant

independent of mesh size which may be different at its different occurrences through the paper.

For simplicity, we consider the following model problem to illustrate the main idea: Find

(λ, u) such that {
−∇ · (A∇u) = λu, in Ω,

u = 0, on ∂Ω,
(2.1)

where A is a symmetric and positive definite matrix with suitable regularity, Ω ⊂ Rd(d = 2, 3)

is a bounded domain with Lipschitz boundary ∂Ω and ∇, ∇· denote the gradient, divergence

operators, respectively.

In order to use the finite element method to solve the eigenvalue problem (2.1), we need to

define the corresponding variational form as follows: Find (λ, u) ∈ R× V such that b(u, u) = 1

and

a(u, v) = λb(u, v), ∀v ∈ V, (2.2)
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where V := H1
0 (Ω) and

a(u, v) =

∫
Ω

∇u · A∇vdΩ, b(u, v) =

∫
Ω

uvdΩ. (2.3)

The norms ∥ · ∥a and ∥ · ∥b are defined by

∥v∥a = a(v, v)1/2 and ∥v∥b = b(v, v)1/2.

It is well known that the eigenvalue problem (2.2) has an eigenvalue sequence {λj} (cf. [3, 7]):

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · , lim
k→∞

λk = ∞,

and associated eigenfunctions

u1, u2, · · · , uk, · · · ,

where b(ui, uj) = δij (δij denotes the Kronecker function). In the sequence {λj}, the λj are

repeated according to their geometric multiplicity.

Now, let us define the finite element approximations of the problem (2.2). First we generate

a shape-regular triangulation Th of the computing domain Ω ⊂ Rd (d = 2, 3) into triangles or

rectangles for d = 2 (tetrahedrons or hexahedrons for d = 3). The diameter of a cell K ∈ Th is

denoted by hK and the mesh size h describes the maximum diameter of all cells K ∈ Th. Based
on the mesh Th, we can construct a finite element space denoted by Vh ⊂ V . For simplicity, we

set Vh as the linear finite element space which is defined as follows

Vh =
{
vh ∈ C(Ω)

∣∣ vh|K ∈ P1, ∀K ∈ Th
}
∩H1

0 (Ω), (2.4)

where P1 denotes the linear function space.

The standard finite element scheme for eigenvalue problem (2.2) is: Find (λ̄h, ūh) ∈ R× Vh

such that b(ūh, ūh) = 1 and

a(ūh, vh) = λ̄hb(ūh, vh), ∀vh ∈ Vh. (2.5)

From [2,3], we have the following Rayleigh quotient expression for λ̄h:

λ̄h =
a(ūh, ūh)

b(ūh, ūh)
, (2.6)

and the discrete eigenvalue problem (2.5) has eigenvalues:

0 < λ̄1,h ≤ λ̄2,h ≤ · · · ≤ λ̄k,h ≤ · · · ≤ λ̄Nh,h,

and corresponding eigenfunctions

ū1,h, ū2,h, · · · , ūk,h, · · · , ūNh,h,

where b(ūi,h, ūj,h) = δij , 1 ≤ i, j ≤ Nh (Nh is the dimension of the finite element space Vh).

Let M(λi) denote the eigenspace corresponding to the eigenvalue λi which is defined by

M(λi) =
{
w ∈ H1

0 (Ω) : w is an eigenfunction of (2.2) corresponding

to λi and b(w,w) = 1
}
, (2.7)
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and define

δh(λi) = sup
w∈M(λi)

inf
v∈Vh

∥w − v∥a. (2.8)

Let us define the following quantity:

ηa(h) = sup
f∈L2(Ω),∥f∥b=1

inf
v∈Vh

∥Tf − v∥a, (2.9)

where T : L2(Ω) → V is defined as

a(Tf, v) = b(f, v), ∀f ∈ L2(Ω) and ∀v ∈ V. (2.10)

Then the error estimates for the eigenpair approximations by the finite element method can be

described as follows.

Lemma 2.1. ([2 Lemma 3.7], [3,7]) For any eigenpair approximation (λ̄i,h, ūi,h) (i = 1, · · · , Nh)

of (2.5), there exists an exact eigenpair (λi, ui) of (2.2) such that b(ui, ui) = 1 and

∥ui − ūi,h∥a ≤ Ciδh(λi), (2.11)

∥ui − ūi,h∥b ≤ Ciηa(h)∥ui − ūi,h∥a, (2.12)

|λi − λ̄i,h| ≤ Ciδ
2
h(λi). (2.13)

Here and hereafter Ci is some constant depending on i but independent of the mesh size h.

The following Rayleigh quotient expansion of the eigenvalue error is the tool to obtain the

error estimates of the eigenvalue approximations.

Lemma 2.2. ([2]) Assume (λ, u) is an eigenpair of the eigenvalue problem (2.2). Then for any

w ∈ H1
0 (Ω)\{0}, the following expansion holds:

a(w,w)

b(w,w)
− λ =

a(w − u,w − u)

b(w,w)
− λ

(w − u,w − u)

b(w,w)
. (2.14)

3. Cascadic Multi-level Correction Scheme for Eigenvalue Problem

In this section, we propose a type of cascadic multigrid method for eigenvalue problems.

The main idea is to approximate the underlying boundary value problems on each level by some

simple smoothing iteration steps. In order to describe the cascadic multigrid method, we first

introduce the sequence of finite element spaces and the smoothing properties of appropriate

smoothers.

In order to do multigrid scheme, we first generate a coarse mesh TH with the mesh size

H and the coarse linear finite element space VH is defined on the mesh TH . Then we define

a sequence of triangulations Thk
of Ω ⊂ Rd determined as follows. Suppose Th1 (produced

from TH by regular refinements) is given and let Thk
be obtained from Thk−1

via some regular

refinements (produce βd subelements) such that

hk ≈ 1

β
hk−1, (3.1)
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where the positive number β denotes the refinement index and is larger than 1. Based on this

sequence of meshes, we construct the corresponding nested linear finite element spaces such

that

VH ⊆ Vh1 ⊂ Vh2 ⊂ · · · ⊂ Vhn . (3.2)

The sequence of finite element spaces Vh1 ⊂ Vh2 ⊂ · · · ⊂ Vhn and the finite element space VH

have the following relations of approximation accuracy

ηa(H) & δh1(λi), δhk
(λi) ≈

1

β
δhk−1

(λi), k = 2, · · · , n. (3.3)

Remark 3.1. The relation (3.3) is reasonable since we can choose δhk
(λi) ≈ hk (k = 1, · · · , n).

Always the upper bound of the estimate δhk
(λi) . hk holds. Recently, we also obtain the lower

bound result δhk
(λi) & hk (cf. [15]).

For generality, we introduce a smoothing operator Sh : Vh → Vh which satisfies the following

estimate 
∥Sm

h wh∥a ≤ C
mα

1
h∥wh∥b,

∥Sm
h wh∥a ≤ ∥wh∥a,

∥Sm
h (wh + vh)∥a ≤ ∥Sm

h wh∥a + ∥Sm
h vh∥a,

(3.4)

where C is a constant independent of h and α is some positive number depending on the choice

of smoother. It is proved in [8,16,20] that the symmetric Gauss-Seidel, the SSOR, the damped

Jacobi and the Richardson iteration are smoothers in the sense of (3.4) with parameter α = 1/2

and the conjugate-gradient iteration is the smoother with α = 1 (cf. [17, 18]).

Then we define the following notation

wh = Smooth(Vh, f, ξh,m, Sh) (3.5)

as the smoothing process for the following boundary value problem

a(uh, vh) = b(f, vh), ∀vh ∈ Vh, (3.6)

where ξh denote the initial value of the smoothing process, Sh denote the chosen smoothing

operator, m the number of the iteration steps and wh is the output of the smoothing process.

Now, we come to introduce the cascadic multigrid method for the eigenvalue problem (2.2).

To state it more clearly, we assume the desired eigenvalue is simple and the computing domain

is convex. Then we have the following estimates

ηa(H) ≈ H, ηa(hk) ≈ hk and δhk
(λi) ≈ hk, k = 1, · · · , n. (3.7)

Assume we have obtained an eigenpair approximation (λhk , uhk) ∈ R × Vhk
. Now we

introduce a cascadic type one correction step to improve the accuracy of the current eigenpair

approximation (λhk , uhk) ∈ R× Vhk
.
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Algorithm 3.1. Cascadic type of One Correction Step

1. Define the following auxiliary source problem: Find ûhk+1 ∈ Vhk+1
such that

a(ûhk+1 , vhk+1
) = λhkb(uhk , vhk+1

), ∀vhk+1
∈ Vhk+1

. (3.8)

In order to solve (3.8), perform the smoothing process (3.5) to obtain a new eigenfuc-

tion approximation ũhk+1 ∈ Vhk+1
by

ũhk+1 = Smooth(Vhk+1
, λhkuhk , uhk ,mk+1, Shk+1

). (3.9)

2. Define a new finite element space V
hk+1

H = VH + span{ũhk+1} and solve the following

eigenvalue problem: Find (λhk+1 , uhk+1) ∈ R × V
hk+1

H such that b(uhk+1 , uhk+1) = 1

and

a(uhk+1 , v
hk+1

H ) = λhk+1b(uhk+1 , v
hk+1

H ), ∀vhk+1

H ∈ V
hk+1

H . (3.10)

Summarize the above two steps by defining

(λhk+1 , uhk+1) = SmoothCorrection(VH , Vhk+1
, λhk , uhk ,mk+1, Shk+1

).

Based on the above algorithm, i.e., the cascadic type of one correction step, we can construct

a cascadic multigrid method as follows:

Algorithm 3.2. Eigenvalue Cascadic Multigrid Method

1. Find (λh1 , uh1) ∈ R× Vh1 such that

a(uh1 , vh1) = λh1b(uh1 , vh1), ∀vh1 ∈ Vh1 .

2. For k = 1, · · · , n− 1, do the following iteration

(λhk+1 , uhk+1) = SmoothCorrection(VH , Vhk+1
, λhk , uhk ,mk+1, Shk+1

).

Finally, we obtain an eigenpair approximation (λhn , uhn) ∈ R× Vhn .

In order to analyze the convergence of Algorithm 3.2, we introduce an auxiliary algorithm

and then show its superapproximate property.

Similarly, assume we have obtained an eigenpair approximations (λ̃hk
, ũhk

) ∈ R× Vhk
. We

introduce the following auxiliary one correction step.

Algorithm 3.3. Auxiliary One Correction Step

1. Define the following auxiliary source problem: Find ûhk+1
∈ Vhk+1

such that

a(ûhk+1
, vhk+1

) = λ̃hk
b(ũhk

, vhk+1
), ∀vhk+1

∈ Vhk+1
. (3.11)
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1. Define a new finite element space ṼH,hk+1
= VH + span{ûhk+1

} + span{ũhk+1} and

solve the following eigenvalue problem: Find (λ̃hk+1
, ũhk+1

) ∈ R × ṼH,hk+1
such that

b(ũhk+1
, ũhk+1

) = 1 and

a(ũhk+1
, ṽH,hk+1

) = λ̃hk+1
b(ũhk+1

, ṽH,hk+1
), ∀ṽH,hk+1

∈ ṼH,hk+1
. (3.12)

Summarize the above two steps by defining

(λ̃hk+1
, ũhk+1

) = AuxiliaryCorrection(VH , Vhk+1
, λ̃hk

, ũhk
, ũhk+1).

Algorithm 3.4. Eigenvalue Auxiliary Multilevel Correction Method

1. Find (λ̃h1 , ũh1) ∈ R× Vh1 such that

a(ũh1 , vh1) = λ̃h1b(ũh1 , vh1), ∀vh1 ∈ Vh1 .

2. For k = 1, · · · , n− 1, do the following iteration

(λ̃hk+1
, ũhk+1

) = AuxiliaryCorrection(VH , Vhk+1
, λ̃hk

, ũhk
, ũhk+1).

Finally, we obtain an eigenpair approximation (λ̃hn , ũhn) ∈ R× Vhn .

Before analyzing the convergence of Algorithm 3.2, we show a superapproximate property

of ũhk
obtained by Algorithm 3.4.

Theorem 3.1. Assume ũhk
(k = 1, · · · , n) are obtained by Algorithm 3.4 and ūhk

(k =

1, · · · , n) the standard finite element solution in Vhk
. If the sequence of finite element spaces

Vh1
, · · · , Vhn

and the coarse finite element space VH satisfy the following condition

Cηa(H)β2 < 1, (3.13)

the following estimate holds

∥ūhk
− ũhk

∥a ≤ Cηa(hk)δhk
(λ), k = 1, · · · , n, (3.14)

∥ūhk
− ũhk

∥b ≤ Cηa(H)ηa(hk)δhk
(λ), k = 1, · · · , n, (3.15)

where C is a constant only depending on the eigenvalue λ. The eigenvalue approximations λ̃hk

and λ̄hk
have the following estimates∣∣λ̄hk

− λ̃hk

∣∣ ≤ ∥ūhk
− ũhk

∥2a, k = 1, · · · , n. (3.16)

Proof. Define ϵhk
:= |λ̃hk

− λ̄hk
| + ∥ũhk

− ūhk
∥b, k = 1, · · · , n. It is obvious that ϵh1

= 0.

From (2.5) and (3.11), we have

∥ūhk+1
− ûhk+1

∥2a = a(ūhk+1
− ûhk+1

, ūhk+1
− ûhk+1

)

= λ̄hk+1
b(ūhk+1

, ūhk+1
− ûhk+1

)− λ̃hk
b(ũhk

, ūhk+1
− ûhk+1

)

= b(λ̄hk+1
ūhk+1

− λ̃hk
ũhk

, ūhk+1
− ûhk+1

)

≤ C∥λ̄hk+1
ūhk+1

− λ̃hk
ũhk

∥b∥ūhk+1
− ûhk+1

∥a, (3.17)
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where Poincaré’s inequality is used in the last inequality above. Note that the eigenvalue

problem (3.12) can be regarded as a finite dimensional approximation of the eigenvalue problem

(2.5). Similarly to Lemma 2.1 (see [2,13]), from the second step in Algorithm 3.3, the following

estimate holds

∥ūhk+1
− ũhk+1

∥a
≤ C inf

ṽH,hk+1
∈ṼH,hk+1

∥ūhk+1
− ũH,hk+1

∥a ≤ C∥ūhk+1
− ûhk+1

∥a. (3.18)

Then combining (3.17) and (3.18) leads to

∥ūhk+1
− ũhk+1

∥a ≤ C∥λ̄hk+1
ūhk+1

− λ̃hk
ũhk

∥b
= C∥λ̄hk+1

ūhk+1
− λ̄hk+1

ũhk
+ λ̄hk+1

ũhk
− λ̃hk

ũhk
∥b

≤ C
(
|λ̄hk+1

− λ̃hk
|+ ∥ūhk+1

− ũhk
∥b
)

≤ C
(
|λ̄hk+1

− λ̄hk
|+ |λ̄hk

− λ̃hk
|+ ∥ūhk+1

− ūhk
∥b + ∥ūhk

− ũhk
∥b
)

≤ C
(
|λ̄hk+1

− λ̄hk
|+ ∥ūhk+1

− ūhk
∥b + ϵhk

)
. (3.19)

From the properties of Vhk
⊂ Vhk+1

, VH,hk
⊂ Vhk

, Lemma 2.1 and (3.3), we have

∥ūhk+1
− ūhk

∥a ≤ Cδhk
(λ),

∥ūhk+1
− ūhk

∥b ≤ Cηa(hk)∥ūhk+1
− ūhk

∥a,∣∣λ̄hk+1
− λ̄hk

∣∣ ≤ C∥ūhk+1
− ūhk

∥2a ≤ Cδhk
(λ)2 ≤ Cηa(hk)δhk

(λ)

∥ūhk
− ũhk

∥b ≤ Cηa(H)∥ūhk
− ũhk

∥a,∣∣λ̄hk
− λ̃hk

∣∣ ≤ C∥ūhk
− ũhk

∥2a.

Substituting above inequalities into (3.19) leads to the following estimates

∥ūhk+1
− ũhk+1

∥a ≤ C
(
δ2hk

(λ) + ηa(hk)δhk
(λ) + ϵhk

)
≤ C

(
ηa(hk)δhk

(λ) + ηa(H)∥ūhk
− ũhk

∥a
)
. (3.20)

When k = 1, since ũh1 := ūh1 and λ̃h1 := λ̄h1 , we have

∥ūh2 − ũh2∥a ≤ Cηa(h1)δh1(λ). (3.21)

Based on (3.3), (3.20), (3.21) and recursive argument, we have the following estimates:

∥ūhk
− ũhk

∥a ≤ C
k∑

j=2

Ck−jηk−j
a (H)ηa(hj−1)δhj−1(λ)

≤ C

k∑
j=2

Ck−jηk−j
a (H)βk−j+1ηa(hk)β

k−j+1δhk
(λ)

≤ Cβ2
( k∑

j=2

(
Cηa(H)β2

)k−j
)
ηa(hk)δhk

(λ)

≤ Cβ2

1− Cβ2ηa(H)
ηa(hk)δhk

(λ). (3.22)
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Therefore, the desired result (3.14) holds under the condition Cηa(H)β2 < 1. Furthermore,

(3.15) and (3.16) can be obtained directly from Lemmas 2.1 and 2.2, respectively. Then the

proof is completed. �

Note that V hk

H ⊂ ṼH,hk
, then we can obtain the following estimates which play an important

role in our analysis.

Lemma 3.1. ([2]) Let uhk , V hk

H and ũhk
, ṼH,hk

be defined in Algorithms 3.1 and 3.3. Then

the following estimates hold:

∥uhk − ũhk
∥a ≤ C∥ûhk

− ũhk∥a, (3.23)

∥uhk − ũhk
∥b ≤ Cηa(H)∥uhk − ũhk

∥a, (3.24)

|λhk − λ̃hk
| ≤ ∥uhk − ũhk

∥2a. (3.25)

Proof. Since V hk

H ⊂ ṼH,hk
, according to (3.10) and (3.12), uhk can be viewed as the spectral

projection of ũhk
(cf. [2]). Then from Lemma 2.1 and the definitions of ṼH,hk

and V hk

H , we have

∥ũhk
− uhk∥a ≤ C inf

v
hk
H ∈V

hk
H

∥ũhk
− vhk

H ∥a

≤ C inf
v
hk
H ∈V

hk
H

∥ûhk
− vhk

H ∥a ≤ C∥ûhk
− ũhk∥a, (3.26)

which is the desired result (3.23). Similarly, we also have (3.24) by the following argument

∥ũhk
− uhk∥b ≤ Cηa(V

hk

H )∥ũhk
− uhk∥a ≤ Cηa(H)∥ũhk

− uhk∥a,

where

ηa(V
hk

H ) := sup
f∈L2(Ω),∥f∥b=1

inf
v∈V

hk
H

∥Tf − v∥a ≤ ηa(H).

Furthermore, (3.25) can be obtained directly from Lemma 2.2 and the proof is completed. �

Remark 3.2. Since VH ⊂ V hk

H and VH ⊂ ṼH,hk
, from Lemma 2.1, we have

∥uhk − ũhk
∥a ≤ ∥uhk − u∥a + ∥u− ũhk

∥a ≤ CδH(λ). (3.27)

Now, we come to give error estimates for Algorithm 3.2.

Theorem 3.2. Assume the eigenpair approximation (λhn , uhn) is obtained by Algorithm 3.2,

(λ̃hn
, ũhn

) is obtained by Algorithm 3.4 and the smoother selected in each level Vhk
satisfy the

smoothing property (3.4) for k = 1, · · · , n. Under the conditions of Theorem 3.1, we have the

following estimate:

∥ũhn − uhn∥a ≤ C
n∑

k=2

(
1 + Cηa(H)

)n−k

mα
k

δhk
(λ), (3.28)

and the corresponding eigenvalue error estimate∣∣λ̃hn − λhn
∣∣ ≤ C∥ũhn − uhn∥2a. (3.29)
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Proof. Define ehk
:= uhk − ũhk

for k = 1, · · · , n. Then it is easy to see that eh1 = 0. From

Lemma 3.1, the following inequalities hold

∥ehk+1
∥a = ∥uhk+1 − ũhk+1

∥a ≤ C∥ûhk+1
− ũhk+1∥a

≤ C
(
∥ûhk+1

− ûhk+1∥a + ∥ûhk+1 − ũhk+1∥a
)
. (3.30)

For the first term in (3.30), together with (3.8), (3.11), Lemma 3.1 and (3.27), we have

∥ûhk+1
− ûhk+1∥a ≤ C∥λhkuhk − λ̃hk

ũhk
∥b

≤ C
(
∥uhk − ũhk

∥2a + ∥uhk − ũhk
∥b
)
≤ Cηa(H)∥uhk − ũhk

∥a = Cηa(H)∥ehk
∥a. (3.31)

For the second term in (3.30), due to (3.4) and (3.31), the following estimates hold

∥ûhk+1 − ũhk+1∥a = ∥Smk+1

hk+1
(ûhk+1 − uhk)∥a

≤ ∥Smk+1

hk+1
(ûhk+1 − ũhk

)∥a + ∥Smk+1

hk+1
(ũhk

− uhk)∥a
≤ ∥Smk+1

hk+1
(ûhk+1 − ûhk+1

)∥a + ∥Smk+1

hk+1
(ûhk+1

− ũhk
)∥a + ∥ũhk

− uhk∥a

≤ ∥ûhk+1
− ûhk+1∥a +

C

mα
k+1

1

hk+1
∥ûhk+1

− ũhk
∥b + ∥ũhk

− uhk∥a

≤
(
1 + Cηa(H)

)
∥ehk

∥a +
C

mα
k+1

1

hk+1
∥ûhk+1

− ũhk
∥b. (3.32)

According to Lemma 2.1, (3.3), Theorem 3.1 and its proof,

∥ûhk+1
− ũhk

∥b ≤ ∥ûhk+1
− ūhk+1

∥b + ∥ūhk+1
− ūhk

∥b + ∥ūhk
− ũhk

∥b
≤ Cηa(hk+1)δhk+1

(λ). (3.33)

Combining (3.30), (3.31), (3.32), (3.33) and (3.7), we have

∥ehk+1
∥a ≤

(
1 + Cηa(H)

)
∥ehk

∥a +
C

mα
k+1

δhk+1
(λ), k = 1, · · · , n− 1. (3.34)

Based on (3.34), the fact eh1 = 0 and the recursive argument, the following estimates hold

∥ehn∥ ≤
(
1 + Cηa(H)

)
∥ehn−1∥a +

C

mα
n

δhn(λ)

≤
(
1 + Cηa(H)

)2∥ehn−2∥a +
(
1 + Cηa(H)

) C

mα
n−1

δhn−1(λ) +
C

mα
n

δhn(λ)

≤ C
n∑

k=2

(
1 + Cηa(H)

)n−k 1

mα
k

δhk
(λ).

This is the desired result (3.28). The estimate (3.29) can be obtained from Lemma 2.2 and

(3.28). �

Corollary 3.1. Under the conditions of Theorem 3.2, we have the following estimates:

∥ūhn − uhn∥a ≤ C
(
ηa(hn)δhn(λ) +

n∑
k=2

(
1 + Cηa(H)

)n−k

mα
k

δhk
(λ)

)
, (3.35)

|λ̄hn
− λhn | ≤ ∥ūhn

− uhn∥2a. (3.36)
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Now we come to estimate the computational work for Algorithm 3.2. Define the dimension

of each linear finite element space as

Nk := dim Vhk
, k = 1, · · · , n.

Then we have

Nk ≈
(hk

hn

)−d

Nn =
( 1

β

)d(n−k)

Nn, k = 1, · · · , n. (3.37)

From Theorem 3.2, in order to control the global error, it is required that the number of

iterations in the coarser spaces should be larger than the fine spaces. To give a precise analysis

for the final error and complexity estimates, we assume the following inequality holds for the

number of iterations in each level mesh:(hk

hn

)ζ

≤ mα
k

m̄α
≤ σ

(hk

hn

)ζ

, k = 2, · · · , n− 1, (3.38)

where m̄ = mn, σ > 1 and ζ > 1 are some appropriate constants.

Now, we give the final error and the complexity estimates for Algorithm 3.2.

Theorem 3.3. Under the conditions (3.3), (3.38) and β1−ζ(1 + CH) < 1, for any given γ ∈
(0, 1], the final error estimate satisfies

∥uhn − ũhn∥a ≤ γhn (3.39)

if we take

m̄ >
(CCζ

γ

) 1
α

, (3.40)

where Cζ = 1/(1− β1−ζ(1 + CH)).

Assume the eigenvalue problems solved in the coarse spaces VH and Vh1 need work MH and

Mh1 , respectively. If ζ/α < d, the total computational work of Algorithm 3.2 can be bounded by

O(Nn+Mh1 +MH log(Nn)) and furthermore O(Nn) provided MH ≪ Nn and Mh1 ≤ Nn; while

if ζ/α = d, the total computational work can be bounded by O(Nn log(Nn)+Mh1 +MH log(Nn))

and furthermore O(Nn log(Nn)) provided MH ≪ Nn and Mh1 ≤ Nn.

Proof. By Theorem 3.2, together with (3.1), (3.7), (3.28) and (3.38), we have the following

estimates:

∥uhn − ũhn∥a

≤ C
n∑

k=2

(1 + Cηa(H))n−k 1

mα
k

δhk
(λ) ≤ C

n∑
k=2

(1 + CH)n−k 1

m̄α

(hk

hn

)−ζ

hk

≤ C

n∑
k=2

(1 + CH)n−kβ(n−k)(1−ζ) hn

m̄α
= C

hn

m̄α

n−2∑
k=0

(
β1−ζ(1 + CH)

)k
≤ C

hn

m̄α

1

1− β1−ζ(1 + CH)
. (3.41)

When β1−ζ(1 + CH) < 1, (3.41) becomes

∥uhn − ūhn∥a ≤ CCζ

m̄α
hn. (3.42)
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Then it is obvious that we can obtain ∥uhn−ũhn∥a ≤ γhn when m̄ satisfies the condition (3.40).

Let W denote the whole computational work of Algorithm 3.2, wk the work on the k-th level

for k = 1, · · · , n. Based on the definition of Algorithms 3.1 and 3.2, (3.1), (3.38) and (3.37),

the following estimates hold

W =
n∑

k=1

wk ≤ Mh1 +
n∑

k=2

mkNk +MH logβ(Nn)

≤ Mh1 + CMH log(Nn) + m̄σ1/αNn

n∑
k=2

( 1

β

)(n−k)(d−ζ/α)

.

Then we know that the computation work W can be bounded by O(Mh1 +MH log(Nn) +Nn)

when d − ζ/α > 0 and by O(Mh1 +MH log(Nn) + Nn log(Nn)) when d − ζ/α = 0. It is also

obvious they can be bounded by O(Nn) and O(Nn log(Nn)), respectively, if MH ≪ Nn and

Mh1 ≤ Nn are provided. �

Corollary 3.2. Under the same conditions of Theorem 3.3 and (3.40) holding, if Chn ≤ γ,

then we have the following estimate

∥uhn − ūhn
∥a ≤ 2γhn. (3.43)

If we choose the conjugate gradient method as the smoothing operator, then α = 1 and the

computation work of Algorithm 3.2 can be bounded by O(Nn +Mh1 +MH log(Nn)) or O(Nn)

provided MH ≪ Nn and Mh1 ≤ Nn for both d = 2 and d = 3 when we choose 1 < ζ < d.

When the symmetric Gauss-Seidel, the SSOR, the damped Jacobi or the Richardson it-

eration act as the smoothing operator, we know α = 1/2. Then the computation work of

Algorithm 3.2 can be bounded by O(Nn + Mh1 + MH log(Nn)) (O(Nn) provided MH ≪ Nn

and Mh1 ≤ Nn) only for d = 3 when we choose 1 < ζ < 3/2. In the case of α = 1/2 and d = 2,

from Theorem 3.3 and its proof, we can only choose ζ = 1 and then the final error has the

estimate

∥uhn − ūhn∥a ≤ Chn| log(hn)|

and the computational work can only be bounded by O(Nn log(Nn) + Mh1 + MH log(Nn))

(O(Nn log(Nn)) provided MH ≪ Nn and Mh1
≤ Nn.

4. Numerical Tests

In this section, three numerical examples are presented to illustrate the efficiency of the

cascadic multigrid scheme (Algorithm 3.2) proposed in this paper. Here, for all three examples,

we choose the conjugate-gradient iteration as the smoothing operator (α = 1) and the number

of iteration steps by

mk = ⌈σ × 2ζ(n−k)⌉ for k = 2, · · · , n

with σ = 2, ζ = 1.01 and ⌈r⌉ denoting the smallest integer which is not less than r.
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4.1. Model eigenvalue problem

Here we give the numerical results of the cascadic multigrid scheme for the Laplace eigenvalue

problem on a two dimensional domain Ω = (0, 1)× (0, 1). The sequence of finite element spaces

are constructed by using linear element on the series of mesh which are produced by regular

refinement with β = 2 (connecting the midpoints of each edge). To investigate the convergence

behaviors with different initial meshes, we take two meshes generated by Delaunay method as

the initial mesh: one is coarser, the other is finer (see Figure 4.1).

Algorithm 3.2 is applied to solve the eigenvalue problem. For comparison, we also solve the

eigenvalue problem by the direct finite element method.
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Fig. 4.1. The coarser and finer initial meshes for Example 1

Figure 4.2 gives the corresponding numerical results for the first eigenvalue λ1 = 2π2 and

the corresponding eigenfunction on the two initial meshes illustrated in Figure 4.1.
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Fig. 4.2. The errors of the cascadic multigrid algorithm for the first eigenvalue 2π2 and the corresponding

eigenfunction, where u1,h and λ1,h denote the eigenfunction and eigenvalue approximation by Algorithm

3.2, and udir
1,h and λdir

1,h denote the eigenfunction and eigenvalue approximation by direct eigenvalue

solving (The left figure corresponds to the left mesh in Figure 4.1 and the right figure corresponds to

the right mesh in Figure 4.1)

From Figure 4.2, we find the cascadic multigrid scheme can obtain the optimal error esti-

mates as same as the direct eigenvalue solving method for the eigenvalue and the corresponding

eigenfunction approximations. Furthermore, Figure 4.2 also shows the computational work of

Algorithm 3.2 can arrive the optimality.
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Fig. 4.3. The errors of the cascadic multigrid algorithm for the first six eigenvalues on the unit square,

where λj,h denotes the eigenvalue approximation by Algorithm 3.2, and λdir
j,h denotes the eigenvalue

approximation by direct eigenvalue solving (The left figure corresponds to the left mesh in Figure 4.1

and the right figure corresponds to the right right mesh in Figure 4.1).

We also check the convergence behavior for multi eigenvalue approximations with Algorithm

3.2. Here the first six eigenvalues λ = 2π2, 5π2, 5π2, 8π2, 10π2, 10π2 are investigated. We

also adopt the meshes shown in Figure 4.1 as the initial mesh and the corresponding numerical

results are shown in Figure 4.3. Figure 4.3 also exhibits the optimal convergence and complexity

of the cascadic multigrid scheme.

4.2. More general eigenvalue problem

Here we give the numerical results of the cascadic multigrid scheme for solving a more

general eigenvalue problem on the unit square domain Ω = (0, 1)× (0, 1): Find (λ, u) such that

−∇ · A∇u+ ϕu = λρu, in Ω, (4.1a)

u = 0, on ∂Ω, (4.1b)∫
Ω

ρu2dΩ = 1, (4.1c)

where

A =

(
1 + (x1 − 1

2 )
2 (x1 − 1

2 )(x2 − 1
2 )

(x1 − 1
2 )(x2 − 1

2 ) 1 + (x2 − 1
2 )

2

)
,

φ = e(x1− 1
2 )(x2− 1

2 ) and ρ = 1 + (x1 − 1
2 )(x2 − 1

2 ).

In this example, we also use two coarse meshes which are shown in Figure 4.1 as the ini-

tial meshes to investigate the convergence behaviors. Since the exact solution is not known,

we choose an adequately accurate eigenvalue approximations with the extrapolation method

(see, e.g., [12]) as the exact eigenvalues to measure errors. Figure 4.4 gives the corresponding

numerical results for the first six eigenvalue approximations. Here we also compare the numer-

ical results with the direct algorithm. Figure 4.4 also exhibits the optimality of the error and

complexity for Algorithm 3.2.

4.3. Model eigenvalue problem in three dimensional

In order to present the complexity of the proposed numerical method in this paper. Here we

give the numerical results of the cascadic multigrid scheme for the Laplace eigenvalue problem
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Fig. 4.4. The errors of the cascadic multigrid algorithm for the first six eigenvalues on the unit square,

where λj,h denotes the eigenvalue approximation by Algorithm 3.2, and λdir
j,h denotes the eigenvalue

approximation by direct eigenvalue solving (The left figure corresponds to the left mesh in Figure 4.1

and the right figure corresponds to the right right mesh in Figure 4.1)

Fig. 4.5. The initial mesh for Example 3

10
2

10
4

10
6

10
8

10
10

10
−3

10
−2

10
−1

10
0

10
1

Number of elements

E
rr

or
s

Errors by cascadic multigrid method

 

 

λ
1,h

−λ
1

||u
1,h

−u||
a

slope=−2/3
slope=−1/3

10
2

10
4

10
6

10
8

10
10

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of elements

T
im

e 
(s

)

CPU time for cascadic multigrid method

 

 

CPU Time
slope=1

Fig. 4.6. The errors and CPU time of the cascadic multigrid algorithm for the first eigenvalue 3π2,

where λ1,h, u1,h denotes the eigenpair approximation obtained by Algorithm 3.2

on a three dimensional domain Ω = (0, 1)× (0, 1)× (0, 1). The sequence of finite element spaces

are constructed by using linear element on the series of mesh which are produced by putting

some regular refinements on the following initial coarsest mesh (see Figure 4.5). Algorithm 3.2
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is also applied to solve the eigenvalue problem.

The numerical results are illustrated in Figure 4.6: the left gives the error for the first

eigenvalue λ1 = 3π2 and the corresponding eigenfunction, while the right gives the CPU time

cost by the cascadic multigrid method (Algorithm 3.2).

From Figure 4.6, we can also find the cascadic multigrid scheme can obtain the optimal error

estimates for the eigenvalue and the corresponding eigenfunction approximations. Furthermore,

the CPU time results in Figure 4.6 shows the computational work of Algorithm 3.2 can really

arrive the optimality.

5. Concluding Remarks

In this paper, we present a type of cascadic multigrid method for eigenvalue problems based

on the combination of the cascadic multigrid for boundary value problems and the multilevel

correction scheme for eigenvalue problems. The optimality of the computational efficiency has

been demonstrated by theoretical analysis and numerical examples. As shown in the numerical

examples, the cascadic multigrid method can also be used to obtain the multiple eigenpair

approximations of the eigenvalue problem (cf. [21, 22]). Furthermore, the proposed cascadic

multigrid method can be extended to more general eigenvalue problems and other types of

nonlinear problems. The methods based on the multilevel correction technique only needs

the same regularity of the nonlinearity as the finite element method which is different from the

classical methods which depend on higher nonlinear regularity [11,14,16]. Also the extrapolation

methods can be used to accelerate the smoothing steps as in [16, Section 4.7] and [5]. These

will be our future work.
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