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Abstract

In this work we address the numerical solution of large scale fluid-structure interaction

problems when nonconforming grids and/or nonconforming finite elements discretizations

are used at the interface separating the fluid and structure physical domains. To deal with

nonconforming fluid-structure discretizations we use the INTERNODES method (INTER-

polation for NOnconforming DEcompositionS) formerly introduced in [6] for the solution

of elliptic PDEs on nonconforming domain decomposition. To cope with the high com-

putational complexity of the three dimensional FSI problem obtained after spatial and

temporal discretization, we use the block parallel preconditioner FaCSI [7]. A numerical

investigation of the accuracy properties of INTERNODES applied to the nonconforming

FSI problem is carried out for the simulation of the pressure wave propagation in a straight

elastic cylinder. Finally, we study the scalability performance of the FaCSI preconditioner

in the nonconforming case by solving a large-scale nonconforming FSI problem in a patient-

specific arterial bypass.
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1. Introduction

Fluid-Structure Interaction (FSI) problems are systems of partial differential equations that

couple together flow models (typically described by Navier-Stokes equations) and structural

models (typically expressed by the nonlinear elastodynamics equations) through an interface

where both dynamics and kinematics coupling conditions are fulfilled [4,5]. In this work we are

interested in the numerical solution by finite elements of FSI problems when nonconforming

discretizations are used for the fluid and the structure computational domains. Typically, solu-

tion algorithms for fluid-structure interaction problems are derived assuming that conforming

fluid-structure discretizations are used at the fluid-structure interface. In such cases, the en-

forcement of the coupling conditions is straightforward. However, due to the different resolution

requirements in the fluid and structure physical domains, as well as the presence of complex

interface geometries that do not match exactly make the use of matching fluid and structure

meshes problematic. In these situations, it is more natural to deal with discretizations that
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are nonconforming, provided however that the coupling conditions at the interface are properly

enforced.

In this work, to deal with nonconforming discretizations at the discrete fluid-structure inter-

face we use INTERNODES (INTERpolation for NOnconforming DEcompositionS), an interpo-

lation based method that has been proposed in [6] for the numerical solution of elliptic partial

differential equations on nonconforming domain decompositions. INTERNODES is in fact an

alternative to the mortar element method, introduced in the context of nonoverlapping do-

main decomposition [11,12]. The mortar element method has already been used in the context

of nonconforming fluid-structure interaction problems, see e.g. [13–17]. In [18] a dual mortar

method was used with discrete Lagrange multipliers that are constructed on a biorthogonality

relation with the primal shape functions at the fluid-structure interface. Besides the mortar

element method, other coupling strategies have been proposed in the framework of partitioned

solution schemes for fluid-structure interaction problems, see [19–21] and references therein.

In our spatial simulation settings we allow the fluid computational grid and/or the fluid

finite element discretization to be nonconforming with the structural one at the interface. Even

worse, the two interfaces could be geometrically nonconforming, a situation that arises when the

two subdomains are triangulated independently. In such nonconforming cases, the kinematic

and dynamic coupling conditions between the fluid and structure domains are imposed at the

interface by the INTERNODES method. One distinguishing feature of INTERNODES is that

it makes use of two interpolants to carry out the transfer of information across the interface:

one from master to slave and another one from slave to master. In our algorithm the structural

domain is the master while the fluid domain is the slave. Then, we build up two Radial Basis

Function (RBF) inter-grid operators, one Πsf from master to slave, and another Πfs from slave

to master. We enforce the kinematic condition by equating the fluid velocity at the interface as

the image through Πfs of the temporal derivative of the structural displacement. The dynamic

interface condition is instead enforced via a variational method wherein the strong form of the

structural normal component of the Cauchy stresses is obtained as the image through Πsf of

the strong form of the normal component of the fluid stresses (the traction).

We solve the resulting nonlinear FSI problem using a monolithic scheme in which all the

nonlinearities are treated implicitly. To cope with the high computational complexity of the

three dimensional FSI problem, we use FaCSI, a block parallel preconditioner proposed in [7]

for the coupled linearized FSI system obtained after space and time discretization. FaCSI

exploits the factorized form of the FSI Jacobian matrix, a static condensation procedure to

formally eliminate the interface degrees of freedom of the fluid equations, and the SIMPLE

preconditioner for the matrix block generated by the space-time discretization of the unsteady

Navier-Stokes equations.

As a first numerical example, we solve the fluid-structure interaction problem on a cylin-

drical geometry. We assess the accuracy of the INTERNODES method by performing a mesh

convergence study using both nonconforming meshes and polynomial interpolation at the fluid-

structure interface. Furthermore, we investigate the strong and weak scalability properties

of FaCSI using nonconforming discretizations. We compare the results obtained with those

of the fully conforming case. We show that FaCSI yields almost the same scalability perfor-

mance regardless the use of conforming or nonconforming discretizations between the fluid and

the structure at their interface. As a second example, we address a large-scale simulation of

blood flow in a patient-specific arterial bypass: we show that the results obtained using non-

conforming discretizations (fluid velocity, wall shear stress and solid displacement) are in good
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agreement with those reported in [7] where conforming discretizations at the fluid-structure

interface were adopted.

The remainder of the paper is organized as follows. In Section 2 we describe the FSI

model adopted in this work. Then, in Section 3, after introducing the spatial and temporal

discretizations of the problem, we describe how the INTERNODES method is used for the

coupling of nonconforming fluid-structure interface discretizations. In Section 4 we describe

the monolithic solution algorithm, as well as the parallel preconditioner FaCSI, used to solve

the nonlinear FSI problem. In Section 5.1 we carry out a mesh convergence study by solving

the FSI in a straight flexible cylinder. Finally, in Section 5.3, we address the simulation of

blood flow in a patient-specific geometry of a femoropopliteal bypass. Conclusions are drawn

in Section 6.

2. Fluid-Structure Interaction Model

In this section we describe the fluid-structure interaction model that we have adopted. Let

Ω̂f and Ω̂s be the fluid and solid domains, respectively, in their reference configuration. We

denote by Γ̂ = ∂Ω̂f ∩ ∂Ω̂s the fluid-structure interface on the reference configuration. At any

time t > 0, the current fluid domain configuration Ωf
t can be retrieved from Ω̂f by the Arbitrary

Lagrangian Eulerian (ALE) mapping

At : Ω̂f → Ωf
t

X 7→ At(X) = X+ d̂f (X),
(2.1)

where d̂f represents the displacement of the fluid domain. The use of the ALE formulation

allows an arbitrary reconstruction of the volumetric computational grid of Ωf
t from the one of

the domain boundary ∂Ωf
t . For the sake of computation, this reconstruction is directly operated

on the reference configuration by means of a harmonic extension of the structure displacement

d̂s at the fluid-structure interface Γ̂ to the interior of the reference fluid domain Ω̂f , i.e.,
{

−∆d̂f = 0 in Ω̂f ,

d̂f = d̂s on Γ̂.
(2.2)

As the solid displacement d̂s changes in time, Eq. (2.2) allows to define the current fluid domain

configuration Ωf
t = At(Ω̂

f ) thanks to the ALE map parametrization (2.1).

In our FSI model, the fluid dynamics is governed by the incompressible Navier-Stokes equa-

tions written in the ALE frame of reference [4, 5],







ρf

(

∂u

∂t

∣

∣

∣

∣

X

+ ((u−w) · ∇)u

)

−∇ · σf (u, p) = 0 in Ωf
t × (0, T ],

∇ · u = 0 in Ωf
t × (0, T ].

(2.3)

In (2.3), ∂
∂t

∣

∣

X
= ∂

∂t
+ w · ∇ is the ALE derivative, (0, T ] is the time interval, ρf is the fluid

density, u and p are the fluid velocity and pressure, respectively, and σf (u, p) = 2µfǫ(u) − pI

is the Cauchy stress tensor (I is the identity matrix) for a Newtonian fluid. We denoted by

ǫ(u) = 1
2

(

∇u+ (∇u)T
)

the strain rate tensor and by µf the dynamic viscosity of the fluid.

Furthermore, w is the fluid mesh velocity,

w =
∂d̂f

∂t

∣

∣

∣

∣

X

.
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We formulate the structure problem in a Lagrangian frame of reference. The conservation

of momentum for the structure reads

ρs
∂2d̂s

∂t2
−∇ · (FS) = 0 in Ω̂s × (0, T ], (2.4)

where ρs is the density of the structure and FS are the first Piola-Kirchhoff stresses.

The coupling between the geometry, fluid and structure subproblems is expressed by

d̂f = d̂s, (2.5)

∂d̂s

∂t
= u ◦ At, (2.6)

(det[F])−1F−T
σf ◦ At n̂f + (FS) n̂s = 0, (2.7)

where (2.5) expresses the geometric adherence, (2.6) the continuity of the velocities (kinematic

condition) and (2.7) the continuity of the stresses (dynamic condition) on Γ̂.

The resulting system of equations describing the FSI problem is nonlinear due to the moving

fluid domain, the convective term in the fluid momentum equation, and the possible nonlinearity

of the structural material model.

3. INTERNODES for Nonconforming Fluid-Structure Interaction

Problems

We approximate the time derivative in the fluid momentum equation by means of second

order implicit Backward Differentiation Formulas:

∂u

∂t
(tn+1)

∣

∣

∣

∣

x̂

≈
3un+1 − 4un + un−1

2∆t
, (3.1)

where ∆t is time step size.

The time discretization of the structural problem is carried out by the Newmark method

∂2d̂s

∂t2
(tn+1) ≈

1

β∆t2
d̂n+1
s −

1

β∆t2
(d̂n

s +∆t
˙̂
dn
s )−

1− 2β

2β
¨̂
dn
s , (3.2)

where:

¨̂
dn
s =

1

β∆t2
d̂n
s −

1

β∆t2
(d̂n−1

s +∆t
˙̂
dn−1
s )−

1− 2β

2β
¨̂
dn−1
s , (3.3)

˙̂
dn
s =

˙̂
dn−1
s +∆t (γ

¨̂
dn
s + (1 − γ)

¨̂
dn−1
s ). (3.4)

In space, we consider a Galerkin finite element discretization. In our spatial simulation

settings we allow the fluid computational grid and/or the fluid finite element discretization to

be nonconforming with the structural one at the interface, see Figure 3.1.

Even worse, the two interfaces could be geometrically nonconforming, a situation which may

arise when the two subdomains are triangulated independently.

In this work, to deal with nonconforming fluid-structure interface discretizations we use

INTERNODES (INTERpolation for NOnconforming DEcompositionS), formerly proposed in

[6] for elliptic PDEs. As for the mortar element method, in INTERNODES we need to identify

the master and the slave domains Ωslave and Ωmaster , respectively. One distinguishing feature
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(a) Conforming meshes. (b) Non-conforming meshes.

Fig. 3.1. Conforming (left) and non-conforming (right) fluid–structure meshes.

of the INTERNODES method is that it makes use of two different interpolants1) to carry out

the transfer of information across the interface: one from master to slave and another one from

slave to master. One interpolant is used to ensure continuity of the velocity field, the other for

ensuring the continuity of the dual variable (the traction). In this context, the dual variable (the

normal component of the Cauchy stress tensor) in the slave domain is available in weak form:

we first compute a strong representation of the dual variable from the slave side, interpolate it,

transform the interpolated quantity back into weak form and eventually assign the function so

obtained to the master side.

In our fluid-structure interaction problem, we assume the structure domain to be the master,

Ω̂s ≡ Ωmaster , while the fluid one represents the slave, Ωf
t ≡ Ωslave, then we build up two

interpolation operators based on Rescaled-Localized Radial Basis Function (RL-RBF) [8]: one

Πfs from master to slave, and the other Πsf from slave to master. We use interpolation

operators based on Rescaled Localized Radial Basis Functions since they allow also to deal with

slightly nonconforming geometries, i.e., those for which the fluid and structure discretizations

do not exactly coincide (see, e.g., Figure 3.1(b)). At this stage, the kinematic condition is

enforced by equating the fluid velocity at the interface as the image through Πfs of the temporal

derivative of the structural displacement. On the other hand, the dynamic interface condition

is fulfilled via a variational method where the strong form of the structural normal stress is

obtained as the image through Πsf of the strong form of the fluid normal stress.

In particular, after spatial and temporal discretizations, the kinematic coupling condition

at the fluid-structure interface reads:

un+1|Γf = Rfs

(

γ

β∆t
d̂n+1
s |Γs + bc|Γs

)

, (3.5)

where

bc|Γs =
˙̂
dn
s |Γs −

γ

β∆t

(

d̂n
s |Γs +∆t

˙̂
dn
s |Γs

)

−∆t γ
1− 2β

2β
¨̂
dn
s |Γs +∆t (1− γ)

¨̂
dn
s |Γs (3.6)

and Rfs is the matrix associated with operator Πfs. Eq. (3.5) represents the discrete form of

the kinematic coupling condition in the nonconforming case.

We focus now on the coupling condition of the normal component of the stresses at the

fluid-structure interface. Let us denote by λ
n+1
s the weak form of the normal component of

1) We remark that the interpolants characterizing the INTERNODES construction can be arbitrary.
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the Cauchy stress (or normal traction) on Γs at time tn+1, and by MΓs and MΓf the mass

matrices associated to the structure and fluid sides of the interface, respectively. Thanks to

INTERNODES the discrete form of the dynamic coupling condition reads:

λ
n+1
s = MΓsRsfM

−1
Γf λ

n+1
f . (3.7)

In Eq. (3.7), we notice that M−1
Γf λ

n+1
f is an approximation of the strong form of the normal

component of the stresses on Γf ; Rsf (M
−1
Γf λ

n+1
f ) is an interpolation of the normal component

of the stresses on the side of Γs, still in strong form, and MΓs(ΠsfM
−1
Γf λ

n+1
f ) is again in weak

form but on Γs. Note that the order of magnitude of the entries of λn+1
f depend on the mesh

size used to discretize Ωf
t , that of the entries of MΓs(ΠsfM

−1
Γf λ

n+1
f ) depend on the mesh size

of Ω̂s, while the order of magnitude of those of M−1
Γf λ

n+1
f and Πsf (M

−1
Γf λ

n+1
f ) are independent

of the mesh sizes.

At each time step, the resulting nonlinear FSI system to be solved in the nonconforming
case reads:















S(d̂n+1
s ) + 0 + 0 − ITΓsMΓsRsfM

−1

Γf λ
n+1
f

−RsfIΓs d̂
n+1 +G(d̂n+1

f ) + 0 + 0

0 + 0 + F (un+1, pn+1, d̂n+1
f ) + ITΓfλ

n+1
f

−

γ

β∆t
RfsIΓsd̂

n+1
s + 0 + IΓfu

n+1
f + 0















=













bs

0

bf

Rfsbc













.

(3.8)

The diagonal blocks on the left hand side of (3.8) account for the discretized solid, geometry and

fluid problems while Rfs and Rsf are the matrices associated with the interpolation operators

Πfs and Πsf , respectively. We remark that F is nonlinear due to the convective term and the

fact that fluid domain moves. Finally, the matrices IΓf and IΓs are the restriction of fluid and

structure vectors to the interface. See [9] for a complete derivation of (3.8).

4. Numerical Solution of the Nonlinear FSI Problem

We solve the nonlinear FSI problem (3.8) by the Newton method. The solution of (3.8)

at time tn = n∆t is denoted by Xn = (dn
s ,d

n
f , (uf , pf )

n,λn
f )

T . At each time step, we

compute a sequence of approximations Xn+1
1 , Xn+1

2 , etc. until the numerical solution converges

up to a prescribed tolerance. Starting from an approximation of Xn+1
k , the generic k + 1

iteration of the Newton method applied to (3.8) requires first to assemble the residual Rn+1
k =

(rn+1
ds,k

, rn+1
df ,k

, rn+1
u,pf ,k

, rn+1
λ,k )T :

Rn+1
k =



















bs

0

bf

Rfsbc|Γs



















−



















S(d̂n+1
s,k ) − ITΓsMΓsRsfM

−1
Γf λ

n+1
f,k

−RfsIΓs d̂n+1
s,k + G(d̂n+1

f,k )

F (un+1
k , pn+1

k , d̂n+1
f,k ) + ITΓfλ

n+1
f,k

−
γ

β∆t
RfsIΓs d̂n+1

s,k + IΓfun+1
f,k



















. (4.1)

Then, we compute the Newton correction vector δXn+1
k = (δdn+1

s,k , δdn+1
f,k , δ(uk, pk)

n+1, δλn+1
k )T

by solving

JFSI δX
n+1
k = −Rn+1

k , (4.2)
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being

JFSI =













S 0 0 −ITΓsMΓsRsfM
−1
Γf

−RfsIΓs G 0 0

0 D F ITΓf

−
γ

β∆t
RfsIΓs 0 IΓf 0













, (4.3)

where S, G and F represents the linearized structure, geometry and fluid problems, respectively;

D are the shape derivatives (for their exact computation see [10]).

At each iteration of the Newton method, linear system (4.2) is solved by the GMRES method

preconditioned by FaCSI [7]. FaCSI exploits the factorized form of the FSI Jacobian matrix,

the use of static condensation to formally eliminate the interface degrees of freedom of the

fluid equations, and the use of a SIMPLE preconditioner for unsteady Navier-Stokes equations.

When nonconforming fluid-structure discretizations are used at the interface, the preconditioner

FaCSI reads:

PFaCSI = P ap
S

· P ap
G

· P ap
F

, (4.4)

where:

P ap
S

=









HS 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I









, P ap
G

=









I 0 0 0

−RfsIΓs HG 0 0

0 0 I 0

0 0 0 I









, (4.5)

and

P ap
F

=



















I 0 0 0

0 I 0 0

0 D





I 0 0

0 IΓ 0

0 0 I









0

0

0





− γ
β∆t

RfsIΓs 0
(

0 0 0
)

I





































I 0 0 0

0 I 0 0

0 0





I 0 0

0 0 0

0 0 I









0

IΓ
0





0 0
(

0 IΓ 0
)

I





































I 0 0 0

0 I 0 0

0 0





HKii
KiΓ 0

0 IΓ 0

Bi BΓ −H
S̃









0

IΓ
0





0 0
(

0 0 0
)

I





































I 0 0 0

0 I 0 0

0 0





I 0 D−1BT
i

0 IΓ 0

0 0 I









0

IΓ
0





0 0
(

0 0 0
)

I





































I 0 0 0

0 I 0 0

0 0





I 0 0

0 IΓ 0

0 0 I









0

0

0





0 0
(

KΓi KΓΓ BT
Γ

)

I



















. (4.6)

In (4.6) we denoted by K and B the matrices representing the linearized advection-diffusion-

reaction and gradient terms, respectively, split into their internal (index i) and interface (index

Γ) components; furthermore, the matrix D is the diagonal of Kii.

In the preconditioner we have dropped the off-diagonal block −ITΓsMΓsRsfM
−1
Γf of JFSI . In

the application of FaCSI, the inverses of each diagonal, single-physics block are approximated
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by efficient preconditioners denoted by HS (structure problem), HG (geometry problem), HKii

and H
S̃
(fluid problem) based on domain decomposition or the multigrid method. In this work

we make use of the one level Algebraic Additive Schwarz (AAS) method for HS , HG , while the

3 level Algebraic Multigrid (AMG) method is used for HKii
and H

S̃
. We remark that the exact

local subdomain solves for AAS as well as the exact coarse solve of the AMG preconditioner

are carried out by LU factorization using the library MUMPS [22,23].

Once linear system (4.2) is solved, we update the solution, i.e. Xn+1
k+1 = Xn+1

k + δXn+1
k . We

stop the Newton iterations when ‖Rn+1
k ‖∞/‖Rn+1

0 ‖∞ ≤ ǫ, being Rn+1
0 the residual at the

first Newton iteration and ǫ a prescribed tolerance.

In the fully conforming case the residual evaluation is less expensive as Rfs, Rsf and

MΓsRsfM
−1
Γf coincide with the identity matrix (in fact, using conforming discretizations, Rsf

and Rfs are identity matrices and MΓs = MΓf ). Indeed, in the nonconforming case to compute

the residual of the structure subproblem, first we have to apply to λ
n+1
k the inverse of the fluid

mass matrix at the interface, then interpolate it from the fluid to structure side of the interface

and eventually multiply it by the interface mass matrix of the solid. The residual associated

to the geometry subproblem requires to interpolate d̂n+1
s,k from the structure to the fluid side

of the interface. The computation of rn+1
λ,k involves interpolation of d̂n+1

s,k and bc|Γs from the

structure to the fluid side of the interface.

Similarly, we notice that with respect to the conforming case, at each GMRES iteration

the application of the Jacobian matrix JFSI to a given input vector becomes slightly more

computational expensive, too.

5. Numerical Results

Two different test cases are considered: in the first we study the fluid-structure interaction

in a straight elastic tube while in the second we address the simulation of blood flow in a patient

specific bypass geometry. In Section 5.1, after carrying out a mesh convergence study of the

solver implemented, we report the weak and strong scalability properties of the preconditioner

FaCSI in the nonconforming case and we quantify how to deal with nonconforming discretiza-

tions increases the computational costs with respect to the conforming one. In Section 5.3, we

test our solver on a large-scale simulation of the hemodynamics in a femoropopliteal bypass

in which both nonconforming meshes and polynomial degrees are used at the fluid-structure

interface.

5.1. FSI in a straight elastic tube

The first numerical example considered is the benchmark problem proposed in [3] and nu-

merically solved, e.g., in [1,2]. The geometry of the fluid domain consists in a straight cylinder

of length L = 5 cm and radius R = 0.5 cm, surrounded by a structure with uniform thickness

t = 0.1 cm. A normal stress of σ · n = 1.33 × 104 dyne/cm2 is applied at the fluid inflow for

t ≤ 0.003 s, while a homogeneous Neumann boundary condition is used at the fluid outflow.

The structure is clamped at both the ends. The fluid density and dynamic viscosity are ρf = 1.0

g/cm3 and µf = 0.03 g/(cm s), respectively, while the structure has density ρs = 1.2 g/cm3,

Poisson’s ratio νs = 0.3 and Young’s modulus Es = 3× 106 dyne/cm2. The time step size used

is ∆t = 10−4 s.
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5.1.1. Mesh convergence study

In this section we carry out a mesh convergence study of the solver implemented using non-

conforming discretizations at the fluid-structure interface. To this end, we consider five meshes

of increasing refinement: in Table 5.1 we report the information of the meshes used for the

analysis. Two different types of nonconformity, identified by Set A and Set B, are taken into

account.

Table 5.1: Details of the meshes used for the straight cylinder example.

Fluid Structure

# Vertices # Tetrahedra # Vertices # Tetrahedra

Mesh # 1 2’337 11’040 2’460 9’600

Mesh # 2 13’603 72’000 8’052 31’680

Mesh # 3 64’943 362’400 23’028 91’200

Mesh # 4 183’300 1’045’800 60’912 272’160

Mesh # 5 285’912 1’641’180 84’816 379’440

Table 5.2: Number of Degrees of Freedom for the nonconforming polynomial degree case.

Set A - nonconforming polynomial degree

Fluid DoF Structure DoF Coupling DoF Geometry DoF Total

9’348 48’600 2’340 7’011 67’299

54’412 159’720 7’788 40’809 262’729

259’772 458’280 22’572 194’829 935’453

733’200 1’274’616 45’036 549’900 2’602’752

1’143’648 1’775’928 58986 857’736 3’836’298

Table 5.3: Number of Degrees of Freedom (DoF) for the nonconforming meshes case.

Set B - nonconforming meshes

Fluid DoF Structure DoF Coupling DoF Geometry DoF Total

52’152 48’600 3’160 49’815 153’727

320’338 159’720 10’472 306’735 797’265

1’568’222 458’280 30’248 1’503’279 3’560’029

4’473’327 1’274’616 60’264 4’290’027 10’098’234

6’997’815 1’775’928 84’072 6’711’903 15’569’718

In Set A, see Table 5.2, at the fluid-structure interface we use conforming meshes but

nonconforming finite element dscretizations; in Set B, see Table 5.3, we address the case of

nonconforming meshes. In Set A we use P1-P1 finite elements (stabilized by SUPG) for the fluid

velocity and pressure, respectively, P2 for the the structure displacement and P1 for the ALE.

In Set B we discretize the fluid velocity and pressure by P2-P1 finite elements, respectively, the

structure displacement by P2 and the ALE by P2 as well. We point out that the nonconforming

meshes used in Set B have been generated by rotating the conforming ones used in Set A such

that the fluid and structure meshes overlap for roughly a third of an element length.

Let us now compare the results obtained using nonconforming discretizations with those

generated in the conforming case (using more than 15 millions DoFs in total).
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(a) Points where compari-

son is made.
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Fig. 5.1. On the top we show the locations where results are taken in the fluid (PF) and the structure

(PS). From left to right we report the evolution of the radial component of the structure displacement

at PS, the magnitude of the fluid velocity and the fluid pressure at PF. In the mid row we report the

results for Set A while in the bottom row those generated with Set B.

In Figure 5.1 we report the solutions obtained for Set A and Set B by plotting the values of

the fluid velocity and pressure, and the radial component of the solid displacements versus time

at two specific locations shown in Figure 5.1(a). Furthermore, in Figure 5.2, we also report

the difference between the solution obtained using conforming interface discretizations with

those generated in the nonconforming case. The leftmost plots of Figure 5.1 show the mesh

convergence of the structure displacements using Set A (top) and Set B (bottom). The use of

quadratic finite elements in both Set A and Set B yields a very similar convergence behavior
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Fig. 5.2. From left to right we report the error between the solution obtained by conforming interface

discretizations with those generated in the nonconforming case for the radial component of the structure

displacement at PS, the magnitude of the fluid velocity and the fluid pressure at PF (see Figure 5.1).

In the top row we report the results for Set A while in the bottom row those generated with Set B.

observed in both the cases. In the middle and rightmost plots of Figure 5.1 we report the mesh

convergence results for the magnitude of the fluid velocity and the fluid pressure, respectively.

In this regard, we notice the different convergence behavior between Set A and Set B. Indeed,

as a consequence of using P1-P1 elements for the fluid velocity and pressure in Set A while

P2-P1 in Set B, the curves associated to Set B converges much faster than those of Set A.

5.2. Weak and strong scalability study of FaCSI in the nonconforming case

In this section we investigate the weak and strong scalability performance of FaCSI when

nonconforming meshes are used at interface separating the fluid and structure domains. In

addition, we aim at comparing the performance obtained in the nonconforming case with those

reported in [7] (Section 5.1.1), where conforming fluid-structure grids were considered. For

readers’ convenience, in Tables 5.4 and 5.5 we report the details of the meshes adopted and the

corresponding number of degrees of freedom of the discretized FSI problem. We point out that

the nonconforming meshes have obtained by rotating the conforming ones.

In Figure 5.3 and 5.4 we report the weak and strong scalability results obtained, respectively

(consisting in average values over the first 10 time steps simulated). For the sake of comparison,

on the left column we report the weak scalability obtained in the conforming case while in the

right column those with nonconforming discretizations.

By comparing the results with conforming and nonconforming fluid-structure interface dis-

cretizions, we notice that the weak scalability properties of FaCSI obtained in the nonconforming
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Table 5.4: Details of the meshes used for the straight cylinder example.

Fluid Structure

# Vertices # Tetrahedra # Vertices # Tetrahedra

Mesh # 1 210’090 1’202’040 65’424 292’320

Mesh # 2 559’471 3’228’960 191’080 913’920

Mesh # 3 841’341 4’880’640 300’456 1’497’600

Table 5.5: Straight flexible tube test case: number of Degrees of Freedom (DoF).

Fluid DoF Structure DoF Coupling DoF Geometry DoF Total

Mesh # 1 5’134’050 1’369’030 195’576 4’923’960 11’622’616

Mesh # 2 13’728’971 4’119’980 456’114 13’169’500 31’474’595

Mesh # 3 20’696’341 6’599’740 598’104 19’855’000 47’749’185

case are almost the same as those using conforming meshes. In particular, the iteration count

depends only mildly on both the mesh size (along each curve the number of iterations vary

from roughly 22 to 36 iterations) and the number of degrees of freedom, Dofs, per core since

the three curves almost overlap.
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Fig. 5.3. Weak scalability results: left column with conforming discretizations, right column using

nonconforming discretizations. In this study the problem size (workload) assigned to each computing

core is kept constant: the different curves correspond to the results obtained using 30’000, 40’000 and

50’000 degrees of freedom per core.
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Fig. 5.4. Strong scalability results: left column with conforming discretizations, right column using non-

conforming discretizations. In this study, for each of the three sets of fluid-structure meshes considered,

we report the results obtained using an increasing number of computing cores.
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In terms of average time to complete a single time step, we notice that it is weakly scalable

for a core workload of 50’000 Dofs while for 30’000 and 40’000 it increases with the cores count

as the time spent by communication is larger than the actual one associated to the relatively

small amount of computational work required on each individual core.

We notice that dealing with nonconforming meshes yields an increase in computational time

of approximately 15%. This is completely due, as already explained in Section 4 to the intergrid

interpolations which are carried out for both the application of the exact FSI jacobian matrix

and the FaCSI preconditioner at each linear solver iteration.

We focus now on the strong scalability results reported in Figure 5.4. As already observed

for the weak scalability study, the strong scalabity properties of FaCSI obtained with conform-

ing discretizations are preserved in the nonconforming case. In particular, both the iterations

count and the time to build the preconditioner are very similar in both the conforming and

nonconforming case. In terms of time required to solve the linear system, dealing with noncon-

forming FSI discretizations increases the computational costs of about 15%. Finally, we notice

that the time to complete a single time step increases of about 15% too (as observed earlier in

the weak scalability study) with respect to the conforming case as a consequence of the more

computationally expensive solution of the linear system.

5.3. FSI in a femoropoliteal bypass

In this section we simulate the blood flow in a patient-specific femoropopliteal bypass. In

this example we consider a high-resolution fluid mesh that is much finer than the one used for

the structure, see Figure 5.5.

(a) Inlet Γf
in (right) and occluded branch Γf

occl

(left).

(b) Outlet Γf
out.

Fig. 5.5. Meshes generated for the femoropopliteal bypass test case.

The blood is characterized by a density ρf = 1 g/cm3 and a dynamic viscosity µf = 0.0035

g/(cm s). The Young’s modulus of the vessel wall is Es = 4× 106 dyne/cm2 and the Poisson’s

ratio is νs = 0.45. We impose patient-specific measured flow rate on Γf
in while homogeneous

Dirichlet conditions are applied at the occluded branch Γf
occl. At the outflow section of the

domain Γf
out we apply a mean pressure taken from [24, Section 3.2.3], in which the same bypass

geometry and inflow flow rate profile were considered. The structure is clamped at the inlets

and the outlet rings where we impose d̂s = 0. Homogenous Neumann boundary conditions

are imposed at the outer surface of the vessel. We discretize the solid displacement using P2
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Table 5.6: Details of meshes used for the femoropopliteal bypass example in the nonconforming case.

Fluid Structure

# Vertices # Tetrahedra # Vertices # Tetrahedra

2’768’791 17’247’246 113’380 508’374

Table 5.7: Number of degrees of freedom for the femoropopliteal bypass test case in the nonconforming

case.

Fluid DoF Structure DoF Coupling DoF Geometry DoF Total

11’075’164 9’481’350 943’170 8’306’373 29’806’057

finite elements. For the fluid, we use P1-P1 elements to approximated the velocity and pressure

variables (stabilized by SUPG); P1 elements are used for the ALE map. Therefore, in this

example we use both nonconforming meshes and nonconforming Finite Elements discretizations.

The time step considered is ∆t = 0.001 s. In Tables 5.6 and 5.7 we report the details of the

meshes used and the number of degrees of freedom, respectively.

Fig. 5.6. Streamlines of the fluid flow at time t = 1.8 s (top), 1.9 s (middle) and 2.0 s (bottom). In the

left columns we report the results obtained in the conforming case, on the right those generated using

nonconforming discretizations.
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Fig. 5.7. Magnitude of the structure displacement at time t = 1.8 s (top), 1.9 s (middle) and 2.0 s

(bottom). In the left columns we report the results obtained in the conforming case, on the right those

generated using nonconforming discretizations.

Fig. 5.8. Wall Shear Stress at time t = 1.8 s (top), 1.9 s (middle) and 2.0 s (bottom). In the left

columns we report the results obtained in the conforming case, on the right those generated using

nonconforming discretizations.
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In Figures 5.6-5.8 we show the streamlines of the fluid flow, the Wall Shear Stress (WSS)

distributions and the structural displacement computed at three different time steps during the

third heart-beat simulated. We notice that, although nonconforming meshes and discretizations

are used here, both the WSS magnitude and distribution are in good agreement with the results

obtained in [7] where conforming fluid-structure meshes were adopted.

6. Conclusions

In this work we considered the numerical solution of fluid-structure interaction problems

when nonconforming discretizations are used at the fluid-structure interface. In order to deal

with the nonconforming discretizations we used the INTERNODES method. Furthermore, to

cope with the high-resolution discretizations used in our simulations we used a parallel solver

which makes use of the FaCSI preconditioner for the linearized FSI system obtained after

spatial and temporal discretization. An analysis of the accuracy properties of INTERNODES

applied to the FSI problem was carried out for both the case of nonconforming meshes and

nonconforming polynomial degrees at the fluid-structure interface. Furthermore, we studied

the strong and weak scalability properties of FaCSI and we showed that it yields almost the

same performance regardless the use of conforming or nonconforming discretizations between

the fluid and the structure at their interface. Finally, we used our solver developed to simulate

the blood flow dynamics in a patient specific bypass geometry using both nonconforming meshes

and nonconforming finite element discretizations.
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[2] M.W. Gee, U. Küttler, and W.A. Wall, Truly monolithic algebraic multigrid for fluid-structure

interaction. International Journal for Numerical Methods in Engineering, 26 (2010), 52–72.

[3] F. Nobile, Numerical approximation of fluid-structure interaction problems with application to

haemodynamics. PhD Thesis, EPFL, 2001.

[4] Y. Bazilevs, K. Takizawa, and T. Tezduyar, Computational Fluid–Structure Interaction. Methods

and Applications. Wiley Series in Computational Mechanics. Wiley, 2013.

[5] L. Formaggia, A. Quarteroni, and A. Veneziani, editors, Cardiovascular mathematics, volume 1

of MS&A. Modeling, Simulation and Applications. Springer-Verlag Italia, Milan. Modeling and

simulation of the circulatory system, 2009.

[6] S. Deparis, D. Forti, P. Gervasio, and A. Quarteroni, INTERNODES: an accurate interpolation-

based method for coupling the Galerkin solutions of PDEs on subdomains featuring non-

conforming interfaces. Computers & Fluids, 141 (2016) 22–41.

[7] S. Deparis, D. Forti, G. Grandperrin, and A. Quarteroni, FaCSI: a block parallel preconditioner

for fluid-structure interaction problems in hemodynamics. Journal of Computational Physics, 327

(2016), 700–718.



380 D. FORTI, A. QUARTERONI AND S. DEPARIS

[8] S. Deparis, D. Forti, and A. Quarteroni, A Rescaled Localized Radial Basis Function Interpolation

on Non-Cartesian and Nonconforming Grids. SIAM Journal on Scientific Computing, 36 (2014),

A2745–A2762.

[9] S. Deparis, D. Forti, and A. Quarteroni, A fluid-structure interaction algorithm using radial basis

function interpolation between non-conforming interfaces. in Advances in Computational Fluid-

Structure, Modeling and Simulation in Science, Engineering and Technology, accepted (2015).

[10] M.A. Fernández, and M. Moubachir, An exact block-Newton algorithm for solving fluid-structure

interaction problems. C. R. Math. Acad. Sci. Paris, 336:8 (2003), 681–686.

[11] C. Bernardi, Y. Maday, and A.T. Patera, Domain decomposition by the mortar element method.

In Asymptotic and numerical methods for partial differential equations with critical parameters

(Beaune, 1992), volume 384 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 269–286.

Kluwer Acad. Publ., Dordrecht, (1993).

[12] C. Bernardi, Y. Maday, and A.T. Patera, A new nonconforming approach to domain decomposi-

tion: the mortar element method. In Nonlinear partial differential equations and their applications.
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