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Abstract

We consider the numerical solution by finite difference methods of the heat equation

in one space dimension, with a nonlocal integral boundary condition, resulting from the

truncation to a finite interval of the problem on a semi-infinite interval. We first analyze

the forward Euler method, and then the θ−method for 0 < θ ≤ 1, in both cases in

maximum-norm, showing O(h2 + k) error bounds, where h is the mesh-width and k the

time step. We then give an alternative analysis for the case θ = 1/2, the Crank-Nicolson

method, using energy arguments, yielding a O(h2 + k3/2) error bound. Special attention

is given the approximation of the boundary integral operator. Our results are illustrated

by numerical examples.
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1. Introduction

We are concerned with the numerical solution of the parabolic problem on a semi-infinite

interval,

ut = uxx + f(x, t), for x ≥ 0, t > 0, (1.1a)

u(0, t) = b(t), for t > 0, (1.1b)

u(x, 0) = v(x), for x ≥ 0, (1.1c)

u→ 0, for x→ +∞, (1.1d)

where f(x, t) and v(x) vanish outside a finite interval in x, which in the sequel we normalize

to be [0, 1). To be able to use finite difference or finite element methods for this problem, it

is useful to truncate it to this finite spatial interval. This necessitates setting up a boundary

condition at the right hand endpoint of the interval, x = 1, usually referred to as an artificial

boundary condition (abc). Han and Huang [3] have recently proposed such an abc for (1.1)
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resulting in the initial-boundary value problem

ut = uxx + f(x, t), for x ∈ (0, 1), t > 0 (1.2a)

u(0, t) = b(t), for t > 0, (1.2b)

ux(1, t) +Gu(1, t) = g(t), for t > 0, (1.2c)

u(x, 0) = v(x), for x ∈ (0, 1), (1.2d)

with g(t) = 0, where Gu may be thought of as a fractional derivative of order 1
2 of u, cf. [8], or

Gu(t) = Jut(t), where Jw(t) =
1√
π

∫ t

0

w(s)√
t− s

ds. (1.3)

The function g(t) will be included below for the purpose of our analysis.

To derive this abc at x = 1, we set b1(t) = u(1, t), with u the solution of (1.1), and note

that u also solves

ut = uxx, for x ≥ 1, t > 0,

u(1, t) = b1(t), for t > 0, and u(x, 0) = 0, for x ≥ 1.

Using Laplace transformation one shows that the solution of this problem is

u(x, t) =
x− 1

2
√
π

∫ t

0

(t− s)−3/2b1(s)e
−(x−1)2/(4(t−s)) ds, for x > 1, t > 0.

From this one finds, after some calculation, that

ux(1, t) = − 1√
π

∫ t

0

(t− s)−1/2b′1(s) ds = −Jut(1, t), for t > 0,

and hence that the boundary condition at x = 1 in (1.2) holds. Although [3] does not conatin

any error analysis, the authors demonstrated the effectiveness of this abc by numerical com-

putation. Recently Wu and Sun [7] have analyzed this abc for a slightly more complicated

difference scheme than the Crank-Nicolson one, and Zheng [8] employs the same condition for

the time discretized heat equation using the Z transform. For a technique that does not trun-

cate the domain, see Li and Greengard [4]. Tsynkov [6] contains a survey of numerical solution

on infinite domains.

Our purpose here is to analyze the solution of the truncated problem (1.2) by finite differ-

ences, using the θ-method, for 0 ≤ θ ≤ 1. For θ = 0 this reduces to the explicit forward Euler

method, and for θ > 0 the method is implicit, with the backward Euler method corresponding

to θ = 1, and the Crank-Nicolson method to θ = 1
2 .

We use the spatial grid xm = mh,m = 0, 1, . . .M +1, with h = 1/M ′, whereM is a positive

integer and M ′ = M + 1
2 , thus also using the grid point xM+1 = 1 + 1

2h to the right of the

right hand boundary, but with no gridpoint at x = 1. The step size in time is denoted by k,

with the corresponding time levels tn = nk. We denote by Un
m the difference approximation of

u(xm, tn) and introduce the forward and backward difference quotients in space and time by

∂xU
n
m =

Un
m+1 − Un

m

h
, ∂̄xU

n
m =

Un
m − Un

m−1

h
,

∂tU
n
m =

Un+1
m − Un

m

k
, ∂̄tU

n
m =

Un
m − Un−1

m

k
.
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We consider first, in Section 3 below, the forward Euler approximation

∂tU
n
m − ∂x∂xU

n
m = fn

m, for m = 1, . . . ,M, n ≥ 0, fn
m = f(xm, tn), (1.4)

with the left side boundary values and initial values given by

Un
0 = bn, for n ≥ 1, bn = b(tn), (1.5)

U0
m = vm, for m = 0. . . . ,M + 1, vm = v(xm).

To approximate the boundary condition at x = 1 in (1.2) we use a second order symmetric

finite difference approximation to the spatial derivative at x = 1, and then need to find a

suitable approximation to the integral operator

Gw(t) = Jwt(t) =

∫ t

0

β(t− s)wt(s) ds, where β(t) = (πt)−1/2. (1.6)

Our starting point is the product integration rule for the convolution operator J , setting wj =

w(tj) and Ij = (tj−1, tj), for j = 1, . . . , n,

Jw(tn) ≈ Jkw
n =

n∑

j=1

∫

Ij

β(tn − s) dswj = k1/2
n∑

j=1

ωn−jw
j , n ≥ 1, (1.7)

where

√
πωj = k−1/2

∫ tj+1

tj

y−1/2 dy = 2(
√
j + 1−

√
j) =

2√
j + 1 +

√
j
, j ≥ 0.

We now set

GkU
n = Jk∂̄tU

n = k−1/2
n∑

j=1

ωn−j(U
j − U j−1), for n ≥ 1. (1.8)

This operator will be discussed in detail in Section 2 below.

For the boundary condition at x = 1 we then apply this quadrature rule to the average of

the values at m =M,M + 1, thus prescribing

∂xU
n
M +GkU

n
M ′ = gn, for n ≥ 1, where Un

M ′ = 1
2 (U

n
M + Un

M+1). (1.9)

We begin our analysis with an abstract stability result which we use to show the maximum-

norm stability of the forward Euler scheme, in the case b(t) = 0, setting

‖v‖ = max
0≤m≤M+1

|vm| and ‖v‖0 = max
1≤m≤M

|vm|.

We demonstrate that, provided the standard mesh-ratio condition λ = k/h2 ≤ 1/2 is satisfied,

and in addition a bound for λ from below, λ ≥ λ0 > 1/π, then, for the solutions of (1.4), (1.5),

with bn = 0, and (1.9), we have

‖Un‖ ≤ C(tn)

(
‖U0‖+ k

n−1∑

j=0

‖f j‖0 +max
j≤n

|gj |
)
, for n ≥ 1. (1.10)

Together with estimates for the truncation errors, based on an analysis of the quadrature error

in (1.8), this will show an error bound of the form

‖Un − u(tn)‖ ≤ C(u, tn)h
2, for n ≥ 1. (1.11)
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In Section 4 we then extend our analysis to the θ-method with θ > 0,

∂tU
n
m − ∂x∂x(θU

n+1
m + (1 − θ)Un

m) = fn+θ
m , m = 1, . . . ,M, n ≥ 1, (1.12a)

Un
0 = bn, n ≥ 0, (1.12b)

∂xU
n
M +GkU

n
M ′ = gn, n ≥ 1, (1.12c)

U0
m = vm, m = 0. . . . ,M + 1, (1.12d)

where fn+θ
m = f(xm, tn+θk). In this case, the condition for stability is reduced to 2λ(1−θ) ≤ 1,

which is satisfied for any λ > 0 in the backward Euler case θ = 1, with the requirement λ > 1/π

remaining. The error estimate now reads

‖Un − u(tn)‖ ≤ C(u, tn)(h
2 + k), for n ≥ 1.

In the particular case θ = 1
2 , the approximation of the heat equation in (1.12a) is the Crank-

Nicolson method. In this case our stability condition becomes λ ≤ 1, or k ≤ h2, and the error

bound will be of order O(h2). For the standard boundary value problem for the heat equation,

the Crank-Nicolson method is unconditionally stable in L2, and one is able to show a O(h2+k2)

order error bound. In Section 5 we therefore give an alternative analysis of this case, based on

energy arguments. In treating the boundary condition in (1.12a) we will then have reason to

take advantage of a discrete version of the fact that the kernel β(t) in (1.6) is positive definite,

i.e. ∫ t

0

Jw(s)w(s) ds =

∫ t

0

∫ s

0

β(s− y)w(y) dy w(s) ds ≥ 0, ∀w. (1.13)

Such discrete analogues of J are also discussed in Section 2, cf. [5]. For the discrete Crank-

Nicolson method we show an error bound of nonoptimal order O(h2+k3/2), where we have lost

a factor k−1/2 in the quadrature error in (1.6) because of the weak singularity in β(t).

In Section 6 we illustrate our findings by some numerical examples.

2. The Quadrature Formula

In this section we discuss some properties of the quadrature operator Gk defined in (1.8),

(1.7), approximating the operatorG in (1.3). We begin by showing that this operator is accurate

of order O(k3/2), see also Wu and Sun [7], Lemma 1. We shall use the notation

‖w‖Cp
t
= max

l≤p
sup
s≤t

|w(l)(s)|.

Lemma 2.1. For the quadrature operators Gk and G, defined in (1.8), (1.7), and (1.3), respec-

tively, we have,

|∂̄qt (Gkw
n −Gw(tn))| ≤ Ck3/2‖w‖

C
2+q
tn

, n ≥ 1 + q, q = 0, 1.

where in the case q = 1 we assume that w(l)(0) = 0 for l = 0, 1, 2, 3.

Proof. By our definitions we have

Gkw
n −Gw(tn) =

n∑

j=1

∫

Ij

(∂̄tw
j − w′(s))β(tn − s) ds.
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We find, by Taylor expansion with remainder term, for t ∈ Ij ,

∂̄tw
j − w′(t) = k−1

(∫ tj

t

(tj − s)w′′(s) ds−
∫ t

tj−1

(s− tj−1)w
′′(s) ds

)
.

Hence, after changing the order of integration in two double integrals,
∫

Ij

(∂̄tw
j − w′(t))β(tn − t)dt =

∫

Ij

w′′(s)χnj(s)ds,

where

χnj(s) = k−1
(
(tj − s)

∫ s

tj−1

β(tn − t)dt− (s− tj−1)

∫ tj

s

β(tn − t)dt
)
.

To show our claim for q = 0, we need to prove that

n∑

j=1

∫

Ij

|χnj(s)|ds ≤ Ck3/2.

We note that, for s ∈ Ij ,

χ′
nj(s) = −k−1

∫

Ij

β(tn − t)dt+ β(tn − s) and χ′′
nj(s) = −β′(tn − s).

Since χnj(tj−1) = χnj(tj) = 0 we have

χnj(s) =
1
2 (s− tj−1)(s− tj)χ

′′
nj(ξj) with ξj ∈ Ij ,

and hence

|χnj(s)| ≤ 1
8k

2|β′(tn − tj)| for s ∈ Ij .

Thus
n−1∑

j=1

∫

Ij

|χnj(s)| ds ≤ Ck3
n−1∑

j=1

|β′(tn − tj)| ≤ Ck3/2
n−1∑

j=1

(n− j)−3/2 ≤ Ck3/2.

Finally, for s ∈ In,

|χnj(s)| ≤
∫ tn

s

|χ′
nj(t)|dt ≤ k−1

∫

In

∫

In

β(tn − s)dsdt+

∫

In

β(tn − s) ds ≤ Ck1/2,

so that ∫

In

|χnj(s)|ds ≤ Ck3/2.

Together these estimates complete the proof for q = 0.

For q = 1 we find easily, if w(t) is extended by 0 for t < 0,

∂̄tGkw
n = Gk ∂̄tw

n and ∂̄tGw(tn) = G∂̄tw(tn), for n ≥ 1. (2.1)

By the result for q = 0, and the assumed regularity of w, in particular, that on I1, e.g.,

|D3
t ∂̄tw(t)| = k−1|D3

tw(t)| ≤ C‖w‖C4
t1

, since D3
tw(0) = 0,

|∂̄t(Gkw
n −Gw(tn))|

= |Gk∂̄tw
n −G∂̄tw(tn)| ≤ Ck3/2‖∂̄tw‖C2

tn
≤ Ck3/2‖w‖C3

tn
,
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which completes the proof. �

We note that although the quadrature operator Jk is only first order accurate, because of

the nonsymmetric approximation wj of w(t) on Ij , the operator Gk = Jk∂̄t is of higher order

O(k3/2), where the loss of k1/2 over second order accuracy results from the weak singularity of

β(t).

We shall also use the following boundedness property of the operator Gk.

Lemma 2.2. For the quadrature operator Gk of (1.8), (1.7), we have

|∂̄qtGkw
n| ≤ Ct1/2n ‖w‖

C
1+q
tn

, for n ≥ 1 + q, q = 0, 1,

where for q = 1 we assume w(l)(0) = 0 for l = 0, 1, 2.

Proof. We have for the operator Jk in (1.7)

|Jkwn| ≤
∫ tn

0

β(tn − s) ds max
1≤j≤n

|wj | = Ct1/2n ‖w‖C0
tn
,

and the result for q = 0 now follows at once from Gkw
n = Jk∂̄tw

n, n ≥ 1. For q = 1 one uses

the first part of (2.1), so that ∂̄tGkw
n = Jk∂̄

2
tw

n.

In Section 5 we shall also need to use the positive definiteness of the quadrature formula

defined by, with Jk and ωj as in (1.7),

qn(W ) = k−1/2 1
2 Jk(W

n +Wn−1) =

n∑

j=1

σn−jW
j , with JkW

0 = 0, (2.2)

where σn = ωn + ωn−1 for n ≥ 1, b0 = ω0.

We say that such a quadrature operator of convolution type is positive definite for n ≤ N

if, for the quadratic form analogous to the double integral in (1.13), we have, cf. [5], for all

W = {W j}N1 ,

BN (W ) = k
N∑

n=1

qn(W )Wn = k
N∑

n=1

n∑

j=1

σn−jW
nW j ≥ 0. (2.3)

Writing BN (W ) = BNW · W, where BN is a lower triangular N × N Toeplitz matrix, this

condition may also be expressed in terms of the positivity of the symmetrized quadratic form,

or

B̃N (W ) = B̃NW ·W ≥ 0, ∀ W, where B̃N = BN + BT
N . (2.4)

For (2.3) to hold it is therefore sufficient to show that the symmetric Toeplitz matrix B̃N is

positive definite, or that λN = minj λj(B̃N ) ≥ 0. It is clear that λN is a nonincreasing function

of N . Hence if B̃N is positive definite, then we may conclude that B̃n is positive definite for

n ≤ N .

By computation, using Jacobi’s method by means of the code written by John Burkardt [1]

we could compile Table 1 and hence have the following proposition.

Proposition 2.1. With B̃N defined in (2.4) we have λ104 > 0, and thus qn(W ), as defined in

(2.2), is positive definite for n ≤ 104.
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Table 1: Computed smallest eigenvalues of B̃N .

N λN

10 2.0094 × 10−2

102 2.3066 × 10−4

103 2.3390 × 10−6

104 2.3423 × 10−8

3. The Forward Euler Method

We begin this section with an abstract stability lemma which will be used for the maximum-

norm estimates in this and the next section.

Lemma 3.1. Let {Bn}n≥1, and {Fn}n≥0 be given sequences of nonnegative real numbers, and

assume that the nonnegative sequence {ϕn}n≥0 satisfies

ϕn+1 ≤ (1 + νk)αn max
j≤n

ϕj + (1 − αn)Bn+1 + kFn, for n ≥ 0,

with ν ≥ 0 and 0 ≤ αn ≤ 1. Then

ϕn ≤ max
(
eνtnϕ0,max

j≤n
(eνtn−jBj)

)
+ k

n−1∑

j=0

eνtn−1−jFj , for n ≥ 0.

Proof. The proof is by induction over n. The result clearly holds for n = 0. Assume it holds

for some n ≥ 0. Then

ϕn+1 ≤ eνk
(
αn max

(
eνtnϕ0,max

j≤n
(eνtn−jBj)

)
+ k

n−1∑

j=0

eνtn−1−jFj

)
+ (1− αn)Bn+1 + kFn

≤ max
(
eνtn+1ϕ0, max

j≤n+1
(eνtn+1−jBj)

)
+ k

n∑

j=0

eνtn−jFj .

We now use this lemma to show the following stability result for the forward Euler method.

Theorem 3.1. Let Un be the solution of (1.4), (1.5), (1.9), with bn = 0, for n ≥ 1. Assume

that 1/π < λ0 ≤ λ ≤ 1/2 and ν > 1. Then we have, with C = C(λ0),

‖Un‖ ≤ Ceνtn‖U0‖+ Ck

n−1∑

j=0

eνtn−1−j‖f j‖0 + Cmax
j≤n

(eνtn−j |gj |).

Proof. Given Un we set Un+1
0 = 0 and for the interior mesh-points

Un+1
m = λUn

m−1 + (1− 2λ)Un
m + λUn

m+1 + kfn
m, 1 ≤ m ≤M.

At the right hand boundary the definition (1.9) leads to

Un+1
M+1 = Un+1

M − hGkU
n+1
M ′ + hgn+1. (3.1)

We now note that the approximate integral operator may be written as

GkU
n+1 = k−1/2

(
ω0U

n+1 −
n∑

j=1

dn+1−jU
j − ωnU

0
)
, (3.2)
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where

dj = ωj−1 − ωj > 0, for j ≥ 1 and

n∑

j=1

dj + ωn = ω0 = 2/
√
π. (3.3)

Hence we have, with γ = 1/
√
πλ,

hGkU
n+1 = 2γUn+1 −HkU

n+1, where HkU
n = λ−1/2

( n−1∑

j=1

dn−jU
j + ωn−1U

0
)
.

Solving (3.1) for Un+1
M+1 we obtain, for γ ≤ 1/

√
πλ0 < 1,

(1 + γ)Un+1
M+1 = (1 − γ)Un+1

M +HkU
n+1
M ′ + hgn+1. (3.4)

Setting µ = (1− γ)/(1 + γ) < 1, this takes the form

Un+1
M+1 = µUn+1

M +Wn+1, where Wn = (1 + γ)−1
(
HkU

n
M ′ + hgn

)
. (3.5)

To show our stability result we shall make a change of variables by setting

V n
m = e−xmUn

m, f̃n
m = e−xmfn

m, and g̃n = e−1−h/2gn. (3.6)

Note that, for small h,

‖V n‖ ≤ ‖Un‖ ≤ e1+h/2‖V n‖ ≤ 3‖V n‖, (3.7)

and similarly for fn, f̃n and gn, g̃n. For the interior mesh-points we then have

V n+1
m = λe−hV n

m−1 + (1 − 2λ)V n
m + λehV n

m+1 + kf̃n
m, m = 1, . . . ,M,

and hence, since λ ≤ 1/2, coshh ≤ 1 + 1
2νh

2, for small h, and λh2 = k,

|V n+1
m | ≤ (1− 2λ+ 2λ coshh)‖V n‖+ k‖f̃n‖ ≤ (1 + νk)‖V n‖+ k‖f̃n‖0. (3.8)

For V n+1
M+1 (3.5) yields

V n+1
M+1 = µe−hV n+1

M + (1 + γ)−1
(

1
2Hk(V

n+1
M+1 + e−hV n+1

M ) + h|g̃n+1|
)
.

Hence, using (3.3), we have, since |HkV
n| ≤ λ−1/2ω0 maxj≤n−1 |V j | and ω0/(λ

1/2(1 + γ)) =

1− µ,

|V n+1
M+1| ≤ µe−h|V n+1

M |+ (1− µ)max
j≤n

‖V j‖+ h(1 + γ)−1|g̃n+1|. (3.9)

Using (3.8) to bound V n+1
M , and e−h ≤ 1− 1

2h, we find

|V n+1
M+1| ≤ (1 + νk)(µe−h + 1− µ)max

j≤n
‖V j‖+ kµe−h‖f̃n‖0 + h(1 + γ)−1|g̃n+1|

≤ (1 + νk)(1 − 1
2µh)max

j≤n
‖V j‖+ 1

2µh
(
2(1− γ)−1|g̃n+1|

)
+ kµ‖f̃n‖0.

Hence, with αn = 1 if the maximum is taken in the interior, and αn = 1− 1
2µh if it is taken at

the right hand boundary point,

‖V n+1‖ ≤ (1 + νk)αn max
j≤n

‖V j‖+ (1− αn)
(
2(1− γ)−1|g̃n+1|

)
+ kµ‖f̃n‖0. (3.10)
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Thus with ϕn = ‖V n‖, Bn = 2(1− γ)−1|g̃n|, Fn = µ‖f̃n‖0, we have

ϕn+1 ≤ (1 + νk)αn max
j≤n

ϕj + (1− αn)Bn+1 + kFn,

and by Lemma 3.1 we conclude

‖V n‖ ≤ max
(
eνtn‖V0‖, 2(1− γ)−1 max

j≤n
(eνtn−j g̃j)

)
+ k

n−1∑

j=0

eνtn−1−jµ‖f̃ j‖0.

Using (3.7) and 2(1− γ)−1 ≤ C(λ0), µ ≤ C(λ0), this shows the theorem. �

We remark that without making the transformation of variables (3.6), and taking f = 0 for

simplicity, the above argument would yield

‖Un+1‖ ≤ max
j≤n

‖U j‖+ h|gn+1|,

or, after repeated application,

‖Un‖ ≤ ‖U0‖+ h

n∑

j=1

|gj| ≤ ‖U0‖+ nhmax
j≤n

|gj |

= ‖U0‖+ λ−1h−1tn max
j≤n

|gj |,

which does not show stability in gn.

We now state and prove our error estimate. Setting Dx = ∂/∂x, Dt = ∂/∂t, and letting

δ > 1
2h, we use the notation

‖u‖Cp(Ωt) = max
j+2l≤p

sup
(x,s)∈Ω̃τ

∣∣Dj
xD

l
t u(x, s)

∣∣, with Ω̃t = (0, 1 + δ)× (0, t).

Theorem 3.2. Let Un be the solution of (1.4), (1.5), (1.9), and u that of (1.1). Assume that

1/π < λ0 ≤ λ ≤ 1/2. Then we have

‖Un − u(tn)‖ ≤ C(tn, λ0)h
2‖u‖

C4(Ω̃tn ), for n ≥ 0.

Proof. Setting εnm = Un
m − unm, where unm = u(xm, tn), we have

∂tε
n
m − ∂x∂xε

n
m = τnm, for m = 1, . . . ,M, n ≥ 1,

εn0 = 0, for n ≥ 1,

∂xε
n
M +Gkε

n
M ′ = ψn, for n ≥ 1,

ε0m = 0, for m = 0, . . . ,M + 1.

Here

τnm = fn
m − ∂tu

n
m + ∂x∂xu

n
m = ((ut)

n
m − ∂tu

n
m)− ((uxx)

n
m − ∂x∂xu

n
m),

and hence, since λ ≤ 1/2,

‖τn‖0 ≤ C(k + h2)‖u‖C4(Ωtn ) ≤ Ch2‖u‖
C4(Ω̃tn ), for n ≥ 0.
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Further,

ψn = gn − ∂xu
n
M −Gku

n
M ′

= (Dx(1, tn)− ∂xuM (tn)) + (Gu(1, tn)−Gku(1, tn)) +Gk(u(1, tn)− uM ′(tn))

= ψ1 + ψ2 + ψ3. (3.11)

Here, by the symmetry of [xM , xM+1] around x = 1, |ψ1| ≤ Ch2‖u‖
C3(Ω̃tn ). For ψ2 we have, by

Lemma 2.1,

|ψ2| ≤ Ck3/2‖u(1, ·)‖C2
tn

≤ Ch2‖u‖
C4(Ω̃tn ),

and Lemma 2.2, with q = 0, shows

|ψ3| = |Gk(uM ′(tn)− u(1, tn))| ≤ Ch2t1/2n ‖u‖
C4(Ω̃tn ).

As a result we find

|ψn| ≤ C(tn)h
2‖u‖

C4(Ω̃tn ). (3.12)

Applying the stability estimate of Theorem 3.1 to εnm we thus find

‖Un − un‖ ≤ C(tn, λ0)

(
k

∑

j≤n−1

‖τ j‖0 +max
j≤n

|ψj |
)

≤ C(tn, λ0)h
2‖u‖

C4(Ω̃tn ),

which completes the proof. �

4. The θ-method with θ > 0

In the θ method (1.12a) with θ > 0, given Un, Un+1 is determined from the system

−λθUn+1
m−1 + (1 + 2λθ)Un+1

m − λθUn+1
m+1 = λ(1 − θ)Un

m−1

+ (1− 2λ(1 − θ))Un
m + λ(1− θ)Un

m+1 + kfn+θ
m , m = 1, . . . ,M.

For m = 1 we use Un+1
0 = bn+1, and for Un+1

M+1 we still have (3.1), and hence (3.5). After

elimination of Un+1
M+1, the equation for m =M is therefore

−λθUn+1
M−1 + (1 + (2− µ)λθ)Un+1

M = λ(1 − θ)(Un
M−1 + Un

M+1)

+ (1 − 2λ(1− θ)Un
M + kfn+θ

M + λθWn+1,

where Wn was defined in (3.5). The system of equations in (Un+1
1 , · · · , Un+1

M ) thus has a

tridiagonal matrix, with diagonal elements 1 + 2λθ except the bottom element which is 1 +

(2 − µ)λθ. Since µ < 1 we see that the matrix is diagonally dominant. In particular, it is

nonsingular, and thus the solution Un+1 exists for given Un. Here the stability result reads as

follows.

Theorem 4.1. Let 0 < θ ≤ 1 and let Un be the solution of (1.12a), with bn = 0 for n ≥ 1.

Assume that 2λ(1− θ) ≤ 1, λ ≥ λ0 > 1/π, and ν > 1. Then we have, with C = C(θ, λ0),

‖Un‖ ≤ Ceνtn‖U0‖+ Ck
n−1∑

j=0

eνtn−1−j‖f j+θ‖0 + Cmax
j≤n

(eνtn−j |gj |), for n ≥ 1.
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Proof. Introducing again the new variables V n
m and fn

m as in (3.6), we find this time, for

m = 1, . . . ,M ,

− λθe−hV n+1
m−1 + (1 + 2λθ)V n+1

m − λθehV n+1
m+1

= λ(1 − θ)e−hV n
m−1 + (1− 2λ(1− θ))V n

m + λ(1 − θ)ehV n
m+1 + kf̃n+1

m .

and hence, if the maximum is attained for an interior point m0, 1 ≤ m0 ≤ M , using that

2λ(1− θ) ≤ 1,

(1 + 2λθ)‖V n+1‖ = (1 + 2λθ)|V n+1
m0

| ≤ 2λθ coshh‖V n+1‖
+ (1 + 2λ(1− θ)(coshh− 1)‖V n‖+ k‖f̃n+θ‖0.

Since coshh ≤ 1 + 1
2ν

′h2, with 1 < ν′ < ν, for small h, we conclude

(1− θν′k)‖V n+1‖ ≤ (1 + (1− θ)ν′k)‖V n‖+ k‖f̃n+θ‖0.

Since, for small k, (1− θν′k)−1(1 + (1 − θ)ν′k) ≤ 1 + νk, we have then

‖V n+1‖ ≤ (1 + νk)(‖V n‖+ 2k‖f̃n+θ‖0). (4.1)

If the maximum of V n+1
m is instead taken for m =M+1, (3.9) remains valid, and using (4.1) to

bound the first term on the right in (3.9) as before, that (3.10) holds, and the proof is concluded

as in Theorem 3.1, using Lemma 3.1. �

The error estimate in this case is the following.

Theorem 4.2. Let 0 < θ ≤ 1 and let Un be the solution of (1.12a), and u that of (1.1). Assume

that 2λ(1− θ) ≤ 1 and λ ≥ λ0 > 1/π. Then we have

‖Un − u(tn)‖ ≤ C(tn, θ, λ0)(h
2 + k)‖u‖

C4(Ω̃tn ).

Proof. Here the truncation error in the difference equation is

∣∣τn+θ
m

∣∣ =
∣∣fn+θ

m − ∂tu
n
m + ∂x∂̄x(θu

n+1
m + (1 − θ)unm)

∣∣ ≤ C(h2 + k)‖u‖
C4(Ω̃tn+1

),

and ψn
j is again defined by (3.11) so that (3.12) holds. Applying Theorem 4.1 to εnm = Un

m−unm
therefore shows that

‖Un − un‖ ≤ C(tn)

(
k

n−1∑

j=1

‖τ j+θ‖0 +max
j≤n

|ψj |
)

≤ C(tn)(h
2 + k)‖u‖

C4(Ω̃tn ),

which shows our claim. �

5. The Crank-Nicolson Method

In this section we shall be concerned with the Crank-Nicolson method

∂tU
n
m − ∂x∂̄xÛ

n
m = f

n+
1
2

m , m = 1, . . . ,M, n ≥ 0, (5.1)
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where Ûn = 1
2 (U

n + Un+1), i.e., (1.12a) with θ = 1
2 . We again use the initial and boundary

conditions in (1.12a), in particular, on the right hand side

∂xU
n
M +GkU

n
M ′ = gn, for n ≥ 1, where Gk = Jk∂̄t. (5.2)

In our numerical approximation of (1.2), gn = 0, but the inhomogeneity is included in (5.2) for

the purpose of our error analysis.

To illustrate our approach we begin by proving a stability estimate for the continuous

problem (1.2), with b(t) = v(x) = 0. We recall that the kernel of J is positive definite so that

(1.13) holds. Let

(v, w) =

∫ 1

0

vw dx, ‖v‖L2
= (v, v)1/2, Ωt = (0, 1)× (0, t).

Proposition 5.1. Let u be the solution of (1.2) with b(t) = v(x) = g(0) = 0. Then

‖ut‖L2(Ωt) + ‖ux(·, t)‖L2
≤ C(t)(‖f‖L2(Ωt) + ‖gt‖L2(0,t)), for t ≥ 0.

Proof. Multiplying the differential equation by ut and integrating in x we have

‖ut‖2L2
− (ut, uxx) = (ut, f),

or, integrating by parts and using the boundary condition at x = 1,

‖ut‖2L2
+ 1

2

d

dt
‖ux‖2L2

= ut(1, t)ux(1, t) + (ut, f)

= −ut(1, t)Jut(1, t) + ut(1, t) g(t) + (ut, f).

Our claim now easily follows, after integration in t, and using that by (1.13), with w(t) = ut(1, t),

the integral of the third to last term is nonpositive, so that

∫ t

0

‖ut(s)‖2L2
ds+ 1

2‖ux(t)‖
2
L2

≤
∫ t

0

ut(1, s) g(s)ds+

∫ t

0

(ut(s), f(s))ds.

Here
∫ t

0

ut(1, s) g(s)ds = u(1, t) g(t)−
∫ t

0

u(1, s) gt(s)d

≤ 1
4u(1, t)

2 + g(t)2 +

∫ t

0

gt(s)
2ds+

∫ t

0

u(1, s)2ds.

Using |u(1, t)| ≤ ‖ux(t)‖L2
, we conclude

‖ut‖2L2(Ωt)
+ ‖ux(t)‖2L2

≤ C

(
‖f‖2L2(Ωt)

+ (1 + t)‖gt‖2L2(0,t)
+

∫ t

0

‖ux(s)‖2ds
)
,

and the proposition now follows by Gronwall’s lemma. �

We begin our analysis of the discrete problem with the following discrete version of Green’s

formula. We use the notation

(V,W )m0,m1
= h

m1∑

m=m0

VmWm and ‖V ‖m0,m1
= (V, V )1/2m0,m1

.
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Lemma 5.1. If U0 = V0 = 0, we have

(∂̄x∂xU, V )1,M = −(∂xU, ∂xV )0,M + ∂xUM VM+1.

Proof. We have, if V0 = 0,

(∂̄xU, V )1,M = h
M∑

m=1

∂̄xUmVm = −
M∑

m=0

Um(Vm+1 − Vm) + UMVM+1

= −(U, ∂xV )0,M + UMVM+1.

Hence the lemma follows by replacing U by ∂xU .

We now turn to a stability result for (5.1), which can be though of as a discrete analogue

of Proposition 5.1. We write

(V,W )n = k

n∑

j=0

V jW j ,

(V,W )m0,m1;n =

m1∑

m=m0

(Vm,Wm)n = kh

m1∑

m=m0

n∑

j=0

V j
mW

j
m,

and correspondingly for the norms ‖ · ‖n and ‖ · ‖m0,m1;n.

Theorem 5.1. Let U be the solution of (5.1) and (5.2), with b(t) = v(x) = 0, and set g0 =

g−1 = 0. Assume that qn(W ) as defined in (2.2) is positive definite for n ≤ N. Then we have

‖∂tU‖1,M+1;n−1 + ‖∂xUn‖0,M

≤ C(tn)

(
‖f ·+

1
2 ‖1,M ;n−1 + ‖∂̄tg‖n

)
, 1 ≤ n ≤ N.

Proof. Multiplying (5.1) by V n
m, m = 1, . . . ,M , and using Lemma 5.1 we find, with Ûn =

1
2 (U

n + Un+1), for n ≥ 0,

(∂tU
n, V n)1,M + (∂xÛ

n, ∂xV
n)0,M = ∂xÛ

n
M V n

M+1 + (fn+
1
2 , V n)1,M .

Choosing V n
m = ∂tU

n
m,m = 1, . . . ,M, and V n

M+1 = ∂tU
n
M ′ , we get

‖∂tUn‖21,M + 1
2∂t‖∂xU

n‖20,M−1 +
1
4 h ∂t(∂xU

n
M )2

= ∂xÛ
n
M ∂tU

n
M ′ + (fn+

1
2 , ∂tU

n)1,M .

After multiplication by k and summation in n, from 0 to n− 1, we obtain

1
2‖∂tU‖21,M ;n−1 +

1
4‖∂xU

n‖20,M ≤ (∂xÛM , ∂tUM ′)n−1 + C‖f ·+
1
2 ‖21,M ;n−1. (5.3)

The boundary condition (5.2) for x = 1 now yields, with JkW
0 = 0,

(∂xÛM , ∂tUM ′)n−1 = −(Jk∂̄tÛM ′ , ∂tUM ′)n−1 + (ĝ, ∂tUM ′)n−1. (5.4)

Here, by (2.2), for j ≥ 1 and U j = U j
M ′ ,

Jk∂̄tÛ
j = Jk∂tÛ

j−1 = 1
2Jk∂t(U

j + U j−1) = k1/2qj(∂tU),
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and hence, since JkW
0 = 0, by (2.3),

(Jk∂̄tÛ , ∂tU)n−1 = k1/2
n−1∑

j=1

qj(∂tU) ∂tU
j = k1/2Bn−1(∂tU) ≥ 0.

Thus, the first term on the right in (5.4) is nonpositive,

We now turn to the last term in (5.4) and note that with ∂̄tg
0 = 0 and arbitrary ε > 0,

|(ĝ, ∂tUM ′)n−1| = |ĝn−1Un
M ′ − (∂̄tĝ, UM ′)n−1|

≤ Cε

(
|ĝn−1|2 + ‖∂̄tĝ‖2n−1 + ‖UM ′‖2n−1

)
+ 1

8 |U
n
M ′ |2.

We now observe that |U j
M ′ | ≤ ‖∂xU j‖0,M and hence that (5.3) yields

‖∂tU‖21,M ;n−1 + ‖∂xUn‖20,M ≤ C

(
‖f ·+

1
2 ‖21,M ;n−1 + ‖∂̄tg‖2n

)
+ C‖∂xU‖20,M ;n.

An application of the discrete Gronwall’s lemma bounds the last term and thus completes the

proof. �

We are now ready for our maximum-norm error estimate.

Theorem 5.2. Let U be the solution of (5.1) and (5.2) and u that of (1.2), both with g(t) = 0.

Assume that qN (w) as defined in (2.2) is positive definite for n ≤ N . We then have

‖Un − u(tn)‖ ≤ C(u, tn) (h
2 + k3/2), for 0 ≤ n ≤ N.

Proof. Let εnm = Un
m − u(xm, tn) be the error, and note that ε0m = εn0 = 0 for m =

0, . . . ,M + 1, n ≥ 0. We have for the truncation errors, for n ≥ 0,

∣∣τn+
1
2

m

∣∣ =
∣∣∂tεnm − ∂x∂̄xε̂

n
m)

∣∣ =
∣∣fn+

1
2

m − (∂tu
n
m − ∂x∂̄xû

n
m)

∣∣ ≤ C(u)(h2 + k2),

and, for n ≥ 1,

ψn = ∂xε
n
M +Gkε

n
M ′ = gn − ∂xu

n
M −Gku

n
M ′

= (ux(1, tn)− ∂xu
n
M ) + (Gu(1, tn)−Gku(1, tn)) + (Gk(u(1, tn)− uM ′(tn)))

= ψn
1 + ψn

2 + ψn
3 .

Setting ψ0
l = ψ−1

l = 0 for l = 1, 2, 3, we have ∂̄tψ
n
1 = ∂̄tux(1, tn) − (∂x∂̄tu)

n
M for n ≥ 1, and

hence

‖∂̄tψ1‖n ≤ Ch2‖∂̄tu‖C2(Ωtn ) ≤ Ch2‖u‖C4(Ωtn ), for n ≥ 1.

Further, using Lemma 2.1, with q = 1, noting that Dl
tu(1, 0) = 0 for any l ≥ 0, we find

‖∂̄tψ2‖n ≤ Ck3/2‖u(1)‖C3
tn
, for n ≥ 1,

and, using Lemma 2.2, with q = 1,

‖∂̄tψ3‖n ≤ Ct1/2n ‖u(1)− uM ′‖C2
tn

≤ Ct1/2n h2‖u‖C4(Ωtn ), for n ≥ 1.

Theorem 5.1, applied to εnm, therefore shows, since ‖εn‖ ≤ ‖∂xεn‖0,M , that

‖Un − un‖ ≤ ‖∂xεn‖0,M ≤ C

(
‖τ ·+

1
2 ‖1,M ;n−1 + ‖∂̄tψ‖n

)

≤ C(u, tn)(h
2 + k3/2),

which completes the proof. �
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6. Numerical Examples

In this section we shall illustrate our convergence results in Theorems 3.2, 4.2 and 5.2. For

our test problem we consider (1.2) with f(x, t) = v(x) = g(t) = 0, and

b(t) = 1− erf(
1

2
√
t
), where erf(y) =

2√
π

∫ y

0

e−s2ds.

By Laplace transformation the exact solution is then easily seen to be

u(x, t) = 1− erf

(
1 + x

2
√
t

)
, for x ∈ (0, 1), t > 0, (6.1)

which, modulo a trival translation, is the exact solution used for the same problem by Han and

Huang [3] and Wu and Sun [7]. In the tables below the errors ε = {εm}M+1
m=0 are measured in

the norms ‖ε‖ℓ∞ = max0≤m≤M+1 |εm| and ‖ε‖ℓ2 = (h
∑M+1

m=0 |εm|2)1/2.
Since we have chosen h = 1/M ′, where M ′ =M + 1

2 with M the number of interior spatial

mesh-points, we shall consider refinements of the mesh which essentially treble the number of

mesh-points, by replacing M by M1 = 3M +1, corresponding to choosing the new mesh width

h1 = 1/((3M + 1) + 1
2 ) = h/3, and then check if the error scales with factors of 32, 33/2, 3, for

orders of convergence 2, 3/2 and 1. For the forward Euler (FE) method we choose the time

step k = 1
2 (M + 1)−2, so that λ is just below 1/2. Table 1 lists the results for this case. The

maximum-norm error between the exact solution and the numerical solution is evaluated at

t = 1 and displayed in the third column, while the last column shows the ratio of the errors.

Note that they are approaching the value of 32 confirming the second order convergence of

Theorem 3.2.

For the backward Euler (BE) and Crank-Nicolson (CN) methods we choose k = 1/M ≈ h

and check that the error behaves as the predicted O(h) and O(h3/2), or that it scales as 3 and

33/2 ≈ 5.2, respectively. As in the FE case the numerical solution is computed at t = 1, and

the errors in the ℓ∞ and ℓ2 norms are evaluated. These are provided in Table 3, along with the

ratio of errors. Modulo the first entry in the CN case the ratios clearly confirm the orders of

convergence of Theorems 4.2 and 5.2 above. It is surprising to note that the CN error is large

Table 2: Errors for FE with h = 1/M ′ k = 1

2
(M + 1)−2.

M λ FE ℓ∞ error ratio

10 0.4556 8.20 × 10−5 ***

31 0.4845 8.86 × 10−6 9.26

94 0.4948 9.74 × 10−7 9.10

283 0.4982 1.08 × 10−7 9.02

850 0.4994 1.20 × 10−8 9.00

Table 3: Errors for BE and CN with h = 1/M ′, k = 1/M.

M BE ℓ∞ error ratio CN ℓ∞ error ratio CN ℓ2 error ratio

10 8.88 × 10−4 *** 1.73 × 10−3 *** 6.10 × 10−4 ***

31 2.99 × 10−4 2.97 4.08 × 10−5 42.37 3.20 × 10−5 18.78

94 1.05 × 10−4 2.85 8.36 × 10−6 4.88 6.42 × 10−6 4.98

283 3.61 × 10−5 2.91 1.67 × 10−6 5.01 1.27 × 10−6 5.06

850 1.22 × 10−5 2.96 3.29 × 10−7 5.08 2.50 × 10−7 5.08
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Table 4: Computing (CPU) times in seconds.

M FE BE CN

10 3.37× 10−3 3.61 × 10−3 3.54× 10−3

31 1.19× 10−2 3.52 × 10−3 3.71× 10−3

94 6.20× 10−1 4.05 × 10−3 3.94× 10−3

283 4.78× 101 7.56 × 10−3 8.11× 10−3

850 4.86× 103 3.85 × 10−2 4.36× 10−2

compared to the BE error for M = 10. The CN errors behave slightly better in the ℓ2 norm

as shown in Table 3 but the first entry continues to be large. Such a phenomenon has also

been reported by Faragó and Kovács [2] for the heat equation with smooth initial condition

and zero Dirichlet boundary conditions; the first line in their Table 16 shows an error in the

maximum-norm for CN which is much greater than that for BE. As in our case it is only their

first entry that plays the spoilsport. Han and Huang [3] used the CN method with k = h and

found errors indicating O(h) convergence in the energy norm, and, for their scheme, Wu and

Sun [7] show maximum-norm errors consistent with their O(h2 + k3/2) error bounds. Table 4

shows the computational effort required in terms of CPU time, and emphasizes that the stability

requirements makes the FE method inadequately slow compared to the BE and CN methods.
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