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Abstract

In this paper, by exploiting the special block and sparse structure of the coefficient
matrix, we present a new preconditioning strategy for solving large sparse linear systems
arising in the time-dependent distributed control problem involving the heat equation with
two different functions. First a natural order-reduction is performed, and then the reduced-
order linear system of equations is solved by the preconditioned MINRES algorithm with a
new preconditioning techniques. The spectral properties of the preconditioned matrix are
analyzed. Numerical results demonstrate that the preconditioning strategy for solving the
large sparse systems discretized from the time-dependent problems is more effective for a
wide range of mesh sizes and the value of the regularization parameter.

Mathematics subject classification: 65F08, 65F10, 65F50, 49M25, 49K20, 65N22.
Key words: PDE-constrained optimization, Reduced linear system of equations, Precon-
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1. Introduction

In this paper, we focus on preconditioned iterative methods for solving the large linear
system arising in the time-dependent distributed control problem involving the heat equation.
Specifically, we consider the following distributed control of the heat equations:

min J(y, u),
Y, u

% —V2y =u, for (x,t) € Qx(0,T), (1.1)
subject toq y=f, on 92 x(0,7),

Yy=1vo, at t= 07

for certain functional J(y,u), where f and yo depend maybe on x but not on t. Two target
functionals to be considered in this paper are

*l ' x,t) —ylx 2 é ! u(x 2
) =5 [ [ Wt = iwpana+ 5 [ ] wnpaoa
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and
Ta(y,u) = %/Q(y(ac,T) ~ (@)% +§/O/m(u(x,t))2d9dt.

Here y, u, 4y and p are vectors corresponding to the state, control, desired state and adjoint at
all time steps 1,2, -+, Ny, respectively, and  is the regularization parameter.

By the way of J(y, u) = J1(y, u) being applied the discretize-then-optimize approach ([20,34]),
which discretizes this problem with equal-order finite element basis functions for y,u, and the
adjoint variable p, results in the linear system ([34])

TMy /2 0 KT Y TMi1Y
0 BrMyip —TMia ul| = 0 , (1.2)
K —TMi1 0 p d

where KC', M/, and M; ; are all matrices in RN)X(nNe) and

M+ 7K
-M M+ 1K
K= . ’
-M M+7TK
—-M M+ 71K
M M1y + ¢
M c
MI/Q = ) d=
M c
1
§M C

Here and in the following, I denotes the identity matrix. Denote by

2M sl
M I
My = ; I, = )
M I
2M sl
yM
~vM
M’Y 5= .. c R(nN,,)X(nNt),
~yM
oM
where s = % or 2. In the above, N; is the number of time steps of (constant) size T used

to discretize the PDEs, ¢ the boundary conditions of the PDEs and M a finite element mass
matrix and K a stiffness matrix on €2, which are of the dimension n x n with n being the degrees
of freedom of the finite element approximation.

If J(y,u) = J1(y, u) is alternatively used in the optimize-then-discretize approach, the linear
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system (1.2) becomes

TMI,O 0 KT Y TMLO:U
0 BT My —TMin ul| = 0 . (1.3)
K —TMi 1 0 D d

If J(y,u) = Ja(y, u), using the discretize-then-optimal approach, the linear system becomes

TMO,l 0 KT Y T./\/l0711lj
0 ﬂTMl/Q 77'./\/11’1 u = 0 . (14)
K —TMi 1 0 D d

As many other problems involving optimization with constraints ([18,21,23,26]), after dis-
cretization, these problems often lead to the linear system of equations (1.2), (1.3) or (1.4) of
saddle point structure, see, e.g., [14-16,25,30,32-34]. We see that the total size of the linear
system (1.2), (1.3) or (1.4) is (3nNy) x (3nNy). A key fact about the discretization of these
systems is that the matrix blocks may be extremely large even for rather coarse mesh dis-
cretizations because of the higher dimensional setting. Therefore iterative methods are usually
employed for their solution and finding an efficient numerical method becomes very important.
Moreover, this system must be properly preconditioned in order to avoid stagnation in the
convergence in terms of the norm of the residual. Many efficient iterative and preconditioned
methods have been studied in many literature. For example, Uzawa-like methods ([10, 16]),
GSOR methods ([9]), RPCG methods ([8]), HSS-like methods ([4,6,7]), and so on. We refer
to [3,14] for algebraic properties for saddle point problems. However, the matrix splitting meth-
ods can not be separated from the preconditioning techniques, which can be found in many
literature, e.g., [2,3,9,11,16,17,20,28,30,34]. Thus research has recently gone into developing
preconditioners ([1,2,5,22,24,25,27-30,32-34]) that are insensitive to regularization parameter
as well as the mesh size.

Recently, Pearson, Stoll and Wathen ([27]) built a solver for the boundary control problem,
both in the time-independent Poisson control and the time-dependent heat equation control
cases. It is well known that an initial reduction ([12,32]) of the matrix size may lead to
significant savings, as long as this reduction does not entail extra computational burden.

In this paper, following the strategies of [12, 21,24, 25,27] and [32], first a particularly
simple and effective reduction is performed. Thus the total size of the linear system (1.2), (1.3)
or (1.4) can be reduced to (2nNN;) x (2nN;). Then the solution of the reduced-order linear
system exploits to build effective preconditioning techniques for the obtained reduced-order
system. Finally, a new preconditioning needs only to be concerned with the relevant blocks
in the reduced-order system is presented. Numerical experiments show that the CPU time to
solve the structured linear system of equations arising in the time-dependent PDE-constrained
optimization problems is significantly reduced for a wide range of mesh sizes and the value of
the regularization parameter. Therefore the new preconditioning strategy in this paper is much
effective.

The organization of the paper is as follows. In Section 2, a new strategy for solving the
structured linear system of equations arising in time-dependent PDE-constrained optimization
problems is described. First, the reduced-order linear system is established and then the pre-
conditioning technique for the reduced-order system is presented. In Section 3, the theoretical
analysis of the preconditioning approaches is given. In Section 4, numerical results for a variety
of test problems to demonstrate the effectiveness of the new strategy for solving the structured
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linear system of equations arising in time-dependent PDE-constrained optimization problems
are provided. In Section 5, some concluding remarks are given.

2. The New Solution Strategy

In this section, firstly, the reduced-order linear systems for the structured linear systems
(1.2), (1.3) and (1.4) will be obtained. Then some new structured preconditioning techniques
for the reduced-order linear system will be explored.

Noticing that M, /5 in (1.2) is a symmetric positive definite(SPD) matrix, and the middle
block leads to (87M;/2)u = (T M1,1)p. Hence we have

Then the number of blocks of the linear system (1.2) can be decreased from 3 x 3 to 2 x 2,
resulting in the reduced-order linear system

(e L)) ()
A (i) . (fllc1 —IC%TC> (i) = (TMdl’ly) : (2.1)

where Ay 1= 7 M5, C := T Mo.
In a similar way, the reduced-order system for (1.3) can be written as

™M 1,0 KT v\ ™M 1,0Y
K —%TMQ p) d '
Because M o is a rank-deficient matrix (see [34]), we use M, - instead of the matrix M

and choose 0 < v < 1 so that the matrix M, ., is SPD and sufficiently approximate to M g.
Then the reduced-order system for (1.3) can be rewritten as

v\ Aq KT AN TML’YQ
() -—(K ;o) ()= ("), 22
with Ay =7 My 4.

By the same strategies as above, we use M., 1 instead of the matrix My ;. The reduced-order

or equivalently,

system for the linear system (1.4) can be obtained as

TM%l Kr y\ TM’y,lg
K —%TMQ V4 o d '
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Also the reduced-order linear system for (1.4) can be rewritten as

v\ As KT AN T./\/l»y,ljlj
() -—(K —%o) ()= ("), 23
with A3 = TM%L

Next, we consider preconditioning techniques for the reduced-order linear systems (2.1),
(2.2) and (2.3). Noticing that all the three reduced-order linear systems (2.2), (2.3) and (2.4)

have the same form:
A BT
Az = 1 ) z =g, (2.4)
(B — BC

where A and C' € R(N)X(N) are SPD matrices and B € R™Ne)x(nNe) g 5 block lower-
triangular matrix with symmetric positive definite diagonal blocks.

For the general form of the reduced-order linear system (2.4), there exist many efficient
preconditioners.

When A and B are symmetric positive semi-definite and with at least one of them being
positive definite, Bai ([5]) introduced an additive block diagonal preconditioner. Following this
idea, we can consider the following additive block diagonal preconditioner for the reduced-order
linear system (2.4), denoted by Papp:

S (A + /BB

5(C+ JBB)) '

The block diagonal preconditioner with the Schur complement can be described as

A
Ps = 1 -1 T)'
< EC—FBA B

In practice, solving linear systems involving the Schur complement can be expensive. In an
actual implementation, an application of preconditioner will involve some approximate of the
Schur complement.

Based on the approach for approximation of the Schur complement developed in [28] (see
also in [1,13]), we give some new preconditioner for the linear systems (2.1)-(2.4).

We define &7 := ﬁA*F By, & := ﬁC*F By, where By = Blkdiag(B) is the block diagonal
matrix with the block the same in the diagonal block in B. We have (Bg + ﬁA)A’l(Bd +
%C’)T = £1A71&. Then we can obtain a modified preconditioner

A
Pus = ( EIA_ng). (2.5)

Pyrs can be seen as a block diagonal preconditioner with an approximation Schur complement,
more detail about this preconditioner can be found in [27].

Based on the approach of [1,5,13] and [27], we propose a new ABD—like preconditioner for
the reduced-order linear system (2.4):

PABD—like =

<\/551 ﬁ&) : (2.6)
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Let
Ep:= (M + K)+—1 M, Ey = (M + K)+—2 M
12 ‘= T TV, 21 = T TV,
2VB VB
¥ 1
E,=M+71K)+—=7M, E:=(M+7K)+ —7M.
? VB VB

With the preconditioner Papp_iike defined in (2.6) being applied to the three reduced-order
linear systems (2.1)-(2.3), we can obtain immediately the preconditioners P1pew, Ponew and
Psnew for the linear systems (2.1), (2.2) and (2.3), respectively. Here

Plnew = blkdlag(\/EEIQ; \/EEv N ) \/EE; \/BEI% %EQI; %Ev Tty %E; %EQI%
t ~,
PQnew = blkdlag(\/EEa \/EEa : N ) \/EEa \/BE“/; %Eblv %Ea Tty \/LBEv %EQI%
t N
PBnew = blkdlag(\/EE“/a \/BE’W N ] \/EE“N \/EEv %Ebl; %Ea Tty %E; %E21)~
t N

3. Spectral Analysis of the Reduced-Order Linear Systems

In this section, we will analyze the spectral properties of the reduced-order and the pre-
conditioned reduced-order linear system. Some theoretical bounds on the spectrum of the
preconditioned matrix are established.

First some basic notations and definition will be introduced. Let A and C' € R(*N:)x(nNe) he
SPD matrices and B € R("N)x(n"Ni) he block lower-triangular matrix with symmetric positive
definite diagonal blocks. Define S := BT B.

Here and in the sequel, A(+), . , §. and A. denote the eigenvalue, the minimum eigenvalue,
the maximum eigenvalue and the Rayleigh quotients of the matrix (-), respectively. sp(-) denotes
the set of the eigenvalues of the matrix (-). Suppose that

aa <Aa < Ba, ac < Ao <P, ag<As <fs.

First, we consider the spectral properties for the general form of the reduced-order linear
systems (2.4). The result straightforwardly follows from [31] or the Proposition 2.1 in [32].

Theorem 3.1. Assume that the matriz A is the coefficient matriz defined in (2.4), then

sp(A) CI-UTH,

1= [550a— \ 5255 + 485,
It = B(%ﬁA +4/ %ﬁi +4as,

where

(Ba—1\/BA+ 4as)} ,
(Ba + 1/ +4ﬂs)] .

o= N
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From Theorem 3.1, we can see that the eigenvalues of the coefficient matrix before precondi-
tioning is dependent of O(%), so they increase rapidly when 5 < 1. Therefore a preconditioning
technique must be taken to change the ill-conditioning property of the linear system. Next we
give the spectral properties of the preconditioned matrix 77;1]‘? D—tikeA-

We give bounds about the preconditioned matrices for the preconditioned linear systems
(2.1), (2.2) and (2.3), respectively.

Theorem 3.2. Let pu be the eigenvalue of the preconditioned matriz PIZED_MkeA, A and PABD—tike
be defined in (2.4) and (2.6), respectively. Assume that the eigenvector corresponding to the
eigenvalue 1 is (x7,yT)T. Then

5D e (D G ) o

where

- yTB_Tng_lggy b yTB_Té'lB_le

yTy ’ yTy ’ (3.2)
y"B~TAB~'Cy - yTB TAB &y
=0, b= = .
gy gy

Proof. Noting the properties of the matrices A, B and C, we know that x # 0 and y # 0.
Then we have

Az + BTy = /Buéi,
Bz — %Cy = uﬁé‘gy.
1

By substituting z = BB_I(‘LL\/B(SQ + C)y into the first equation, after some simple algebra
computations, we have

yTy VB yTy yTy
(Retaney
B yTy

Using the definitions of a, b, b and ¢ in (3.2), we can rewrite the above equation as

Zwy!'B~T& B 1&y 1 (yTBTnglcy B yTBTABlggy>

pla+ %(b—é)f (%chl) =0.

The roots of the above equation gives (3.1). O

Theorem 3.3. Let A be one of the matrices A1, Ay or As, where Ay, As, A3z and A are defined
in (2.1), (2.2), (2.3) and (2.4), respectively. Let p be an eigenvalue of the preconditioned matriz
Pirbp_rineA with A being defined in (2.4). Then

ue B(—%bg— %b%—i—éldg),%(ag— ,/a§+4cQ)]
U B( %b2+ %b%+4oz),%(ag+\/a§+4d2)] :
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where
as = L by = b
T VBG S T 1)
= s
T B + VBB + 780 (Z Bar + 5 (B + 78x))
Bs
d —

 (rram + VB(au +Tak)) (o + ﬁ(aM +rak))
Here r = % when A = A1, and r =y when A = Ay or As.

Proof. Denote by

_ 1 1 A BT
A=Puzp ik APABD—tike = <B _%é)

B <P%AP% P~3BTR3

1 p—41 1 )
—3R2CR 2)

PaBD—like = (P ) = (ﬁgl Lg ) )
R /32

1

R™:BP~3

where

M.L. ZENG AND G.F. ZHANG

From Theorem 3.1, we can get bounds for the eigenvalues of the preconditioned matrix

PZ,%D_W%A as 7~ UZ*, where
~_ 1 1 1
1= E(gﬂéW),
~ 1 1 1

1m0
%(5,4 + \/5124 +4ﬁg>} )

(3.3)

In order to obtain bounds for the eigenvalues of the preconditioned matrix corresponding to
A= A; or A= Ay (or A3), we first compute the largest eigenvalues of A and C', and the largest

and smallest eigenvalues of the matrix S =BTB.
When A = Ay, r = 1, we have P = /B and R = ﬁé‘g. Then

y'Ay _ aTAr ! < ! =64
yTy  2T(A+VBBa)z 1+B-ZEe ~ 1+ VB +55) "
yTC'y _ 1 B = B
T T M WIS A
Noticing that
BT(%C + %Bd)_lB ~ (%C + %Bd)_%BBT(%C + %Bd)_%v
we see that
yTBTBy =" BT (50 + ﬁBd)_le
yTy xT(A+/BBa)x
pT(%C+ ﬁBd)*%BBT(%C’Jr ﬁBd)*%p 2T
oTp 2T (A + /BBg)x
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B 2T"BBT 2 2Tz 2T
T T(1 1 T
2tz 2N(5C+ zBa)zx (A++/BBg)x

Bs :
= (TTOLM + \/B(OLM + TOLK))(%O[A/[ + ﬁ(OLM + TOLK)) '

and o
yI' BT By > as
yTy = (M +VB(Bm + TﬁK))(%TﬂM + ﬁ(ﬂM +70K))

Substituting 5 := as, B := b2, ag 1= ¢z and B3 := da into (3.3) gives the designed result. O

= Ozg.

For the case A = A or A3, we only need to replace r = % by r = 7 in the above proof.

4. Numerical Experiments

In this section, some numerical examples are given to support the theoretical results. We
examine our new strategy by using the following time-dependent PDE-constrained optimization
problem, which is used in [27]:

min J(y, u),
yu

% —V2y =wu, for (x,t) € Qx(0,T), (4.1)
subject to y=71, on 00 x (0,7),
y=1yo, at t=0.

The experiments are performed for 7' =1 and 7 = 0.05, i.e., 20 time-steps, the domain consid-
ered 2 = [0, 1)? is a unit square, the desired state is given by

G(x1, 2) = (221 — 1)2(222 — 1)?, if (21, 22) € [0, 5]27 )

0, otherwise.

The zero Dirichlet boundary condition for the distributed control problem, with f = 0 and
yo = 1, is considered in all the experiments.

In our implementations, all iteration processes are terminated once the Euclidean norms of
the current relative residuals are reduced by a factor of 10~* from those of the initial residuals.
The relative residual error (denoted as err) is defined as

_ llg = AW,

err = .
lg — AzO]2

Table 4.1: Information about the experimental environments.

Hardware and Software Details

Computer Microsoft Window XP, Professional, Service Pack 3
AMD Phenom(tm) IT X4 830 Processor
2.719GH z, Memory 3.00GB
Version of Matlab R2009b(7.9.0.529)
32-bit(win32)
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We also use the degree of freedom (DoF') to represent the order of matrix tested in our perfor-
mance, IT is the number of iteration steps and CPU is the elapsed CPU time in seconds. Pg
and Pjrs are the preconditioners for the original linear system (before order-reduced):

TH
Pg = BTM1/2 )
%/C’Hillc —+ %M171(M1/2)71M171

TH
Puys = BT M2 ;
%(K + ﬁMLl)'H*l(’C + ﬁMlyl)

where H is referred to M 5 in Example 4.1, M1 ,, in Example 4.2, and M, ;1 in Example 4.3,
respectively. For details about this example, we refer to [19,27].

Example 4.1. The time-dependent distributed control problem is defined by (4.1)-(4.2).

In Example 4.1, we minimize J = J; with discretize-then-optimize approach. We refer
to [19,27] for a more detailed description about this example. The problem is discretized in
time using a backward Euler implicit time-stepping method with V; time steps of size 7, which
results in the linear system (1.2).

Example 4.2. The time-dependent distributed control problem is the same as Example 4.1.

In Example 4.2, we use the optimize-then-discretize approach ( [27]) with J(y,u) =
J1(y,w) and discretize in time using a backward Euler implicit time-stepping method with Ny
time steps of size 7, which leads to the linear system (1.3).

Before preconditioned Accurate Schur complemment preconditioner
1 1
08 08
06 06
0 °
g g
3 o4 ERY
3 5]
H H
g 02 & 02
1=} =)
] 3
] 0 ok ok ok ek e ok ol oodolohdiioiiblcce 2 oF *
] s
£ 0.2 £ -02
H g
g g
g -04 & -04
E E
-06 -0.6
-08 -0.8
” . . . . . . . . -1 . .
-6 -14 -12 -10 -8 6 -4 -2 [ 2 -1 -05 0 05 1 15
real part of the eigenvaluues < 10° real part of the eigenvaluues
ion Schur i Pinew
1 T 1 T
08 0.8
06 06
8 o
E 5 o4
K] g
£ 02 § o2f
s o
S ]
2 O FE—: * g OFm— SO
5 s
£ -0.2 £ -02
g g
= o
g -04 € 04
£ E
-06 -0.6
-08 -0.8
-1 -1
-1 -05 [ 05 1 15 B -05 [ 05 1
real part of the eigenvaluues real part of the eigenvalues

Fig. 4.1. Eigenvalue distributions for Example 4.1 with 8 = 107%. Before preconditioning(top left
corner ), preconditioned by Ps(top right corner), Puys (left bottom), Pinew (right bottom).
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Table 4.2: Preconditioned by Ps, Pars and the new preconditioning strategy for Example 4.1.

DoF B Ps  Pus  Pinew
e T2 14 19
CPU 0.15 0.61 0.06
L, IT 2 20 12
2940 10 CPU 0.15 0.84 0.04
s T2 % 13
CPU 0.15 1.04 0.04
e T2 14 16
CPU 324 13.21 0.32
L, IT 2 2 13
13500 10 CPU 324 19.76 0.27
e 1T 2 26 12
CPU 329 22.73 0.25

Example 4.3. The time-dependent distributed control problem is described as the above.

For this Example, applying the discretize-then-optimize formulation with J(y,u) = Ja(y, u)

approach, by the same discretizing way as Example 4.1, we obtain the linear system (1.4).
Eigenvalue distributions of the preconditioned matrices are very important to analyze the

Table 4.3: Numerical results with different 5 for Example 4.1.

DoF Jé; Ps Prs  Pinew
0z 1T 6 10 19
CPU 0.28 0.40 0.06
PP Rt 13 12
92940 CPU 0.53 0.51 0.04
s T 1015 13
CPU 043 0.58 0.04
oo 1T 1 4 4
CPU 0.10 0.20 0.02
e 1T 6 10 16
CPU 6.34 9.62 0.32
ot T 1318 13
13500 CPU 13.27 11.90 0.27
o T 17 12
CPU 12.27 15.50 0.25
T 3 4 6
CPU 3.99 4.90 0.14

Table 4.4: Numerical results for larger DoF for Example 4.1.

DoF  Pinew =102 pg=10"* pg=10"%
IT 1 12 1
ST660 py 1.859 1.55 1.56
IT 1 12 1
238140 opy 10.?15 9.49 10.?17
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Fig. 4.2. Eigenvalue distributions for Example 4.2 with 8 = 107%,v = 73 and DoF=2940). Before
preconditioning(top left corner ), preconditioned by Pg(top right corner), Pus (left bottom), Panew

(right bottom).
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Table 4.5: Preconditioned by Ps, Pars and the new preconditioning strategy for Example 4.2.

DoF B ¥=05 Ps Pus Panew
e 1T 2 22 19
CPU 0.15 0.90 0.06
., IT 2 16 12
2940 10 CPU 0.15 0.68 0.05
s T 2 26 13
CPU 0.14 1.04 0.04
02 T 2 16 16
CPU 3.24 14.89 0.33
4 IT 2 24 13
13500 10 CPU 3.19  21.09 0.28
e 1T 2 26 12
CPU 3.25  22.92 0.26

Table 4.6: Numerical results with different v for Example 4.2.

DoF :2940 S=10"* Ps  Pus Panew
- IT 4 21 19
=T CPU 054 034 0.061
B IT 4 35 20
V=78 CPU 055 055 007
L IT 4 42 20
V="~ CPU 055 073  0.08
. IT 14 46 20
7= () CPU 055 069 0.6

Table 4.7: Numerical results with different v for Example 4.2.

DoF:13500 B =10"* Ps Prs  Ponew
B IT 14 37 22
V=78 CPU 1285 9.5  0.44
) IT 14 53 22

V=4 CPU 1292 1261 0.44
IT 14 44 22

7= (h) CPU 1201 1043  0.44

Table 4.8: Numerical results with different 5 for Example 4.2.

DoF:13500 ~v=71  Ps Prs  Ponew
1T 7 13 16
=102
B 0 CPU 6.31 3.23 0.33
1T 14 21 17
=10"*
B CPU 12.87 5.39 0.35
s_1e 1T 17T 26 19
h CPU 14.57 6.67 0.40
1T 4 17 12
=10""
B CPU 3.98 4.28 0.26
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Table 4.9: Numerical results for larger DoF using new preconditioning strategy for Example 4.2.

Pomew, DoF_ ~v=7  B=102 B=1071 B=10"°
T 1 1 22
57660 CPU 1,950 2,171 2.68
IT 13 17 21
238140 CPU 10.22 12.93 15.73
IT 13 17 22
253500 CPU 33.56 35.11 53.32

Table 4.10: Preconditioned by Ps, Pars and the new preconditioning strategy for Example 4.3.

DoF B v=05 Ps Pus Panew
IT 2 16 19

B=10""" by 015 066 006
IT 2 2 12

20400 A=1070 py g o 0.04
IT 2 32 11

B=10"" by 015 127 003
T 2 14 17

B=10"" by 333 1324 034
IT 2 24 12

13500 A=10"" oy 330 2100 027
IT 2 28 11

B=10"" by 390 2163 024

Table 4.11: Numerical results with different 8 for Example 4.3.

Ny=1T DoF:2940 Ps  Pms Pinew
IT 1 1

p=10" CPU 0.%7 0.289 0.(?5
IT 1 2 1

p=10""° CPU 0.676 0.13 0.(?6
IT 1 2 2

p=10"" CPU 0.51 0.53 0.86
IT 1

p=10"" CPU 0.524 0:.))578 0.36

Table 4.12: Numerical results with different 8 and « for Example 4.3.

(8,7) DoF:2940  Ps  Pus  Psnew
1T 1 5 21
10%,0.01
(10%,0.01) CPU 0.10 0.63 0.07
1T 21 30 19
1072,0.01
(107%,0.01) CPU 1.96 2.67 0.07
1T 13 43 29
107*,0.0001
(107, 0.0001) CPU 0.51  3.85 0.09
1T 18 25 14
—10
(10777, 0.001) CPU 1.71 2.21 0.05
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Table 4.13: Numerical results for larger DoF using new preconditioning strategy for Example 4.3.

DoF Psnew B = 10_8,"}/ =005 p= 10_8,")/ =0.1 pB= 10_877 =0.5
1T 20 16 11
1
3500 CPU 0.99 0.33 0.24
1T 21 18 13
57660 CPU 2.63 2.27 1.72
1T 20 17 11
238140
CPU 15.08 13.03 8.97
9253500 1T 20 17 12
CPU 57.92 50.55 35.90

Table 4.14: Numerical results with the stopping criterion 10~% using new preconditioning strategy.

~ 3 DoF: 2040 13500 57660 238140
o 1T 27 25 24 23

CPU 033 209 13.08 8485

., IT 20 20 20 18

Example 4.1 =10 CPU 025 1.70 11.09 68.71
e IT 13 17 20 19

CPU 021 143 1107  72.46

e T 27 2% 24 23

CPU 033 215 13.06 8575

., IT 27 28 27 26

0-05 10 CPU 033 227 1458 9445

e IT 23 32 32 31

Example 4.2 CPU 032 264 17.08 102.63
e 1T 27 25 24 23

CPU 034 213 1258  82.01

. 20 20 20 18

CPU 025 171 1069 6545

s 1T 12 17 19 19

CPU 021 141 1022 69.75

. IT 24 28 29 29

0-05 10 CPU 036 249 1644 110.97

IT 19 24 2% 25

Bxample 43 01 107° 5 009 108 1518 96.22
o5 108 T 13 18 18 18

CPU 022 149 10.64  70.63

preconditions properties. In Figs. 4.1-4.3, we depict the eigenvalue distributions in the complex
plane.

Fig. 4.1 shows the eigenvalue distributions of the coefficient matrix without preconditioning
and preconditioned by Pg, Pas and Pinen for Example 4.1, respectively.

Figs. 4.2 and 4.3 depict the eigenvalue distributions of the coefficient matrix without pre-
conditioning and preconditioned by Ps, Pyrs and Popew O Pspen for Example 4.2 or Example
4.3, respectively.

From Theorem 3.3, we can obtain the real intervals of the eigenvalues of the matrices

LA P As and Pyt As are [—1.0692, —2.0048 x 1079 U [2.0008 x 1075, 1.0674] (when

Inew new

r=3), [-2.1107,-2.0048 x 107%] U [2.0008 x 107°,2.1094] (when r = 73 and 8 = 1078) and
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Table 4.15: Numerical results with the stopping criterion 10~° preconditioned by Ps or Pus.

0% B DoF: 2940 13500
Pre.: Ps Pus Ps Pus
e 1T 8 10 8 29
CPU 048 073 1369 10.98
IT 19 20 19 20
E le41 — 107*
xampie 0 CPU 099 050 2835 7.92
s T 5 9 10 17
CPU 033 026 1629 7.01
e 1T 0 29 10 29
CPU 057 070 1644 11.33
IT 21 29 21 29
) 1074
0-05 10 CPU 108 068 3117 11.06
s T 9 23 18 32
Eamole 4.9 CPU 053 055 2026 13.12
pie & o 1T 8 29 8 27
CPU 047 068 1352 10.20
IT 19 20 19 20
4
0.5 10 CPU 101 049 2862 8.12
s T 5 9 10 16
CPU 033 028 17.28 6.72
IT 13 25 21 36
. 1078
0-05 10 CPU 073 061 3196 13.93
IT 10 19 19 30
E le 4. 1 1078
xample 4.3 0 0 CPU 058 047 2919 11.78
IT 7 10 12 18
05 1078
CPU 186 028 19.83 7.42

[—2.0691, —2.0048 x 1075 U[2.0008 x 1076,2.0678] (when 7 = 1072 and 3 = 10~%), respectively.

From Figs. 4.1-4.3 we see that the experimental results are in agreement with theoretical
analysis. In Tables 4.2-4.13, we list the numbers of iteration steps, the computing times with
respect to the preconditioners Pg, Pyrs and Papp—iike, Which are employed to precondition
MINRES with the stopping criterion 10~%. Tables 4.14-4.15 list the numerical results (numbers
of iteration steps, the computing times) with respect to the preconditioners Ps, Pys and
PApp—_iike With the stopping criterion 1076.

For Examples 4.1-4.3, we can apply Ps, Pus, Ps, Pys and Plaew (08 Popew 0O Papew) to
serve as preconditioners for MINRES.

Table 4.2 shows the numerical results for Example 4.1 using preconditioner Pg, Pjg and
Piyew. Table 4.3 gives the numerical results for Example 4.1 using preconditioner Pg, Pysg and
Pipew. And Table 4.4 list the numerical results for Example 4.1 preconditioned by and Pjpeq
for larger DoF.

From Tables 4.1-4.3 we see that the new preconditioning strategy requires larger number
of iteration steps in some cases, but costs less computing time. Moreover, the difference in
computing time becomes more significant for larger DoF.

Similarly, Tables 4.5-4.9 and Tables 4.10-4.13 show the numerical results for Example 4.2
and Example 4.3, respectively.

From Tables 4.14-4.15 we see that the results with the stopping criterion 10™* can be
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extended to the case when the stopping criterion is 10~%. Besides, when preconditioned by Ps
or Pysg, if the matrix dimension DOF is more than 57660, the computer will be out of memory.
However, when using new preconditioning strategy preconditioned, it works well.

From Tables 4.2-4.15, we observe that in terms of computing time new preconditioning
strategy perform significantly better than the other solvers (such as preconditioned by Ps and
Pyss )in solving these problems. The new preconditioning strategy costs less computing time
than other solvers and the difference becomes much greater when the mesh is more refined. And
the new preconditioning strategy seems to be more effective for a wider range of regularization
parameter values as well as mesh sizes for solving the large sparse system which is discretized
from time-dependent PDE-constrained optimization problem.

5. Conclusions

By utilizing the algebraic properties and the sparse structures of the coefficient matrix,
we present a new preconditioning strategy for solving the large sparse system arising in the
time-dependent PDE-constrained optimization problems. By using a particularly simple and
effective reduction, we first obtain the order-reduced structural linear system. Then a new
effective preconditioner is proposed for the reduced-order linear system. Spectral analysis of the
original and the preconditioned reduced-order linear system are discussed. Numerical examples
illustrate that the new preconditioning strategy shows great advantage in the CPU time for
solving this kind of problems for a wide range of mesh sizes and regularization parameter.

Acknowledgments. The work was supported by the National Natural Science Foundation
of China (11271174). The authors would like to thank the referees for the comments and
constructive suggestions, which are valuable in improving the quality of the manuscript.

References

[1] O. Axelsson, M. Neytcheva, B. Ahmad, A comparison of iterative methods to solve complex valued
linear algebraic systems, TR 2013-005.

[2] Z.-Z. Bai, Block preconditioners for elliptic PDE-constrained optimization, Computing, 91 (2011),
379-395.

[3] Z.-Z. Bai, Structured preconditioners for nonsingular matrices of block two-by-two structures,
Math. Comput., 75 (2006), 791-815.

[4] Z.-Z. Bai, Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading
blocks, J. Comput. Appl. Math., 237 (2013), 295-306.

[6] Z.-Z. Bai, F. Chen, Z.-Q. Wang, Additive block diagonal preconditioning for block two-by-two
linear systems of skew-Hamiltonian coefficient matrices, Numer. Algor., 62 (2013), 655-675.

[6] Z.-Z. Bai, G.H. Golub, M.K. Ng, Hermitian and skew-Hermitian splitting methods for non-
Hermitian positive definite linear systems, SIAM J. Matriz Anal. Appl., 24 (2003), 603-626.

[7] Z.-Z.Bai, G.H. Golub, J.-Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods
for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), 1-32.

[8] Z.-Z. Bai, G.-Q. Li, Restrictively preconditioned conjugate gradient methods for systems of linear
equations, IMA J. Numer. Anal., 23 (2003), 561-580.

[9] Z.-Z. Bai, B.N. Parlett, Z.-Q. Wang, On generalized successive overrelaxation methods for aug-
mented linear systems, Numer. Math., 102 (2005), 1-38.

[10] Z.-Z. Bai, Z.-Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point
problems, Linear Algebra Appl., 428 (2008), 2900-2932.



232
(11]

(12]

M.L. ZENG AND G.F. ZHANG

Z.-7. Bai, M.K. Ng, Z.-Q. Wang, Constraint preconditioners for symmetric indefinite matrices,
SIAM J. Matriz Anal. Appl., 31 (2009), 410-433.

Z.-7. Bai, M. Benzi, F. Chen, Z.-Q. Wang, Preconditioned MHSS iteration methods for a class of
block two-by-two linear systems with applications to distributed control problems, IMA J. Numer.
Anal., 33 (2013), 343-369.

Z.-7. Bai, On preconditioned iteration methods for complex linear systems, J. Engrg. Math., 2013.
M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14
(2005), 1-137.

M. Benzi, V. Simoncini, On the eigenvalues of a class of saddle point matrices, Numer. Math.,
103 (2006), 173-196.

J.H. Bramble, J.E. Pascisk, Analysis of the inexact Uzawa algorithm for saddle point problems,
Comput. Optim. Appl., 34 (1997), 1072-1092.

F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, New York, 1991.

M. Gunzburger, C. Trenchea, Optimal control of the time-periodic MHD equations, Nonlinear
Anal., 63 (2005), 1687-1699.

H.C. Elman, A. Ramage, D.J. Silvester, Algorithm 866: IFISS, A Matlab toolbox for modelling
incompressible flow, ACM Trans. Math. Softw., 33 (2007).

M. Hinze, Optimization with PDE constraints, Springer, 2009.

M. Kollmann, M. Kolmbauer, U. Langer, M. Wolfmayr, W. Zulehner, A robust finite element
solver for a multiharmonic parabolic optimal control problem, Comput. Math. Appl., 65 (2013),
469-486.

M. Kolmbauer, Efficient solvers for multiharmonic eddy current optimal control problems with
various constraints and their analysis, IMA J. Numer. Anal., 2012, doi: 10.1093/imanum/drs025.
M.Kollmann, M. Kolmbauer, A preconditioned MinRes solver for time-periodic parabolic optimal
control problems, Numer. Linear Algebra Appl., 2012, doi: 10.1002/nla.1842.

M. Kolmbauer, U. Langer, A robust preconditioned Minres solver for distributed time-periodic
eddy current optimal control problems, STAM J. Sci. Comput., 34 (2012), 785-809.

W. Krendl, V. Simoncini, W. Zulehner, Stability estimates and structural spectral properties of
saddle point problems, Numer. Math., 124 (2013), 183-213.

J.L. Lions, Optimal control of systems governed by partial differential equations, Berlin: Springer,
1971.

J.W. Pearson, M. Stoll, A.J. Wathen, Regularization-robust preconditioners for time-dependent
PDE-constrained optimization problems, SIAM J. Matriz Anal. Appl., 33 (2012), 1126-1152.
J.W. Pearson, A.J. Wathen, A new approximation of the Schur complement in preconditioners
for PDE-constrained optimization, Numer. Linear Algebra Appl., 19 (2012), 816-829.

T. Rees, M. Stoll, Block-triangular preconditioners for PDE-constrained optimization, Numer.
Linear Algebra Appl., 17 (2010), 977-996.

J. Schéberl, W. Zulehner, Symmetric indefinite preconditioners for saddle point problems with
applications to PDE-constrained optimization problems, SIAM J. Matriz Anal. Appl., 29 (2007),
752-773.

D.J. Silvester, A.J. Wathen, Fast iterative solution of stabilized Stokes systems, Part II: Using
general block preconditioners, SIAM J. Numer. Anal., 31 (1994), 1352-1367.

V. Simoncini, Reduced order solution of structured linear systems arising in certain PDE-
constrained optimization problems, Compu. Opt. Appl., 53 (2012), 591-617.

M. Stoll, A.J. Wathen, All-at-once solution of time-dependent Stokes control, J. Comput. Phy.,
232 (2013), 498-515.

F. Troltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applica-
tions, Amer. Math. Soc., 2010.



