
Journal of Computational Mathematics

Vol.32, No.3, 2014, 248–265.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1401-CR13

GENERALIZED CONJUGATE A-ORTHOGONAL RESIDUAL
SQUARED METHOD FOR COMPLEX NON-HERMITIAN

LINEAR SYSTEMS*

Jianhua Zhang

Department of Mathematics, Nanjing University of Aeronautics and Astronautics,

Nanjing 210016, China

Department of Mathematics, Anhui Science and Technology University, Fengyang 233100, China

Email: zhangjhnuaa@gmail.com

Hua Dai

Department of Mathematics, Nanjing University of Aeronautics and Astronautics,

Nanjing 210016, China

Email: hdai@nuaa.edu.cn

Abstract

Recently numerous numerical experiments on realistic calculation have shown that

the conjugate A-orthogonal residual squared (CORS) method is often competitive with

other popular methods. However, the CORS method, like the CGS method, shows irreg-

ular convergence, especially appears large intermediate residual norm, which may lead to

worse approximate solutions and slower convergence rate. In this paper, we present a new

product-type method for solving complex non-Hermitian linear systems based on the bicon-

jugate A-orthogonal residual (BiCOR) method, where one of the polynomials is a BiCOR

polynomial, and the other is a BiCOR polynomial with the same degree corresponding to

different initial residual. Numerical examples are given to illustrate the effectiveness of the

proposed method.

Mathematics subject classification: 65F10.

Key words: Krylov subspace, BiCOR method, CORS method, Complex non-Hermitian

linear systems.

1. Introduction

Some science and engineering applications, for instance in discretizing Helmhlotz and Maxwell

equations, require the solution of large linear systems

Ax = b, (1.1)

where A is an N ×N complex non-Hermitian matrix and N is large.

In recent years, there have been many advances in Krylov subspace methods for solution of

complex non-Hermitian linear systems, see, e.g., [1]. If storage requirement is not considered, the

generalized minimal residual (GMRES) method [2] and its variant flexible GMRES (FGMRES)

[3] are popular options due to their robustness and smooth convergence, see [4]. In terms of

cheaper memory demanding, some of the short-recurrence methods based on Bi-Lanczos process

are effective and competitive. The archetype of this class is the BiCG [5] method proposed by

* Received September 30, 2013 / Revised version received January 1, 2014 / Accepted January 15, 2014 /

Published online May 22, 2014 /

Generalized Conjugate A-Orthogonal Residual Squared Method 249

Fletcher. However, the BiCG method requires the transpose of matrix, suffers from breakdown

and converges irregularly. In order to avoid the transpose of matrix, Sonneveld developed

the CGS [6] method by making use of the “wasted” extra matrix-vector multiplication. To

overcome the erratic residual norms of the CGS method, van der Vorst derived the BiCGSTAB

[7] method by incorporating linear minimal residual step at each iteration. Gutknecht, Sleijpen

and Fokkema generalized this method to the BiCGSTAB2 [8] and BiCGSTAB(l) [9] methods,

respectively. Zhang proposed the generalized product-type of the BiCG (GPBiCG) [10] method

and provided a way to show the CGS, BiCGSTAB, BiCGSTAB2 and GPBiCG methods fit into

a more general framework. ML(k)BiCGSTAB method [11] is also a BiCGSTAB variant based

on multiple left Lanczos starting vectors. In [12], Freund considered an alternative approach

and devised the TFQMR method by combining the CGS idea with quasi-minimal residual

technique proposed in the QMR [13] method. However, they require many more iterations for

some realistic problems [14] compared with the GMRES method.

Recently, Jing et al. [15,16] developed the BiCOR, CORS and BiCORSTAB methods for

solving complex non-Hermitian linear system based on the biconjugate A-orthonormalization

process, which are also considered as Lanczos-type variants of the conjugate A-orthogonal con-

jugate residual (COCR) method [17]. Note that an implementation of BiCOR-type methods

can be constructed from any BiCG-type method by a formal B-inner product 〈ỹ, y〉B = 〈ỹ, By〉

instead of the standard Hermitian inner product 〈ỹ, y〉. The choice of B = A can lead to the

BiCOR-type methods, see [18] for more details. As observed from different numerical exper-

iments on some practical physical problems, including radar cross section (RCS) calculation

from complex structures, acoustics problems, quantum mechanics and so on, these methods

show competitive convergence behavior and are often superior to other Krylov subspaces, see

[19-21] for details. In order to accelerate the convergence rate, Zhao and Huang [22] proposed

the BiCORSTAB2 method. Under an unified generalized framwork, Zhao and Huang et al. de-

duced the generalized product-type BiCOR (GPBiCOR) method [23]. Numerical experiments

from signal deconvolution show that the GPBiCOR method is effective.

The CORS method is more efficient than the restarted GMRES method on most selected

examples, especially coming from realistic RCS calculation [16,21]. However, similarly to the

CGS method [6], the CORS method often shows irregular convergence behavior and produces

large intermediate residual during the iteration process, which badly affects its convergence

rate and accuracy of approximate solutions. Inspired by the generalized CGS (GCGS) method

[24], we develop a generalized CORS (GCORS) method which is a new product-type method

based on the BiCOR method, where polynomial is products of two nearby BiCOR polynomials.

Numerical examples show that this approach may lead to faster convergence as well as to

more accurate results. We also show that the CORS and BiCORSTAB methods fit into the

framework of the GCORS method.

The remainder of the paper is organized as follows. In Section 2, we give a brief description

of the BiCOR method and its properties. The generalized CORS (GCORS) method is derived

in Section 3. In Section 4, we present an efficient implementation of the GCORS method,

which we will call the generalized CORS2 (GCORS2) method. Finally, numerical experiments

are given in Section 5.

Throughout this paper, we use the follow notations. Let the overbar “-” denote the conjugate

complex of a scalar, vector or matrix, ZT and ZH denote the transpose and the conjugate

transpose of a vector or matrix Z, respectively. Pm denotes the set of complex polynomials

pm(t) of degree m with scalar coefficients satisfying pm(0) = 1. The inner product of two

250 J.H. ZHANG AND H. DAI

complex vectors u, v ∈ CN is defined as

〈u, v〉 = vHu =

N∑

i=1

viui.

The Krylov subspace Km(A, v) generated by a matrix A ∈ CN×N and a vector v ∈ CN is

defined as Km(A, v) = span(v,Av, · · · , Am−1v).

2. The BiCOR Method

Now we give a brief description of the BiCOR method for solving the complex non-Hermitian

systems. Jing et al. [15,16] proposed the BiCORmethod based on the biconjugate A-orthonorm-

alization process. Analogously to the BiCG method, we can get two Krylov subspaces Kj(A, r0)

= span(r0, Ar0, · · · , A
j−1r0) and Kj(A

H , r∗0) = span(r∗0 , A
Hr∗0 , · · · , (A

H)j−1r∗0) in the BiCOR

method. The approximate solution xj is extracted from the affine subspace x0+Kj(A, r0) such

that rj ⊥ AHKj(A
H , r∗0). The following orthogonal relations in the BiCOR method hold [15]

rj ⊥ AHKj(A
H , r∗0) and Apj ⊥ AHKj(A

H , r∗0) with r∗0 = p(A)r0. (2.1)

The residual and direction vectors generated during the BiCOR iteration steps satisfy the

following properties [15, 29].

Proposition 1. Let Rn+1 = [r0, r1, · · · , rn], R
∗
n+1 = [r∗0 , r

∗
1 , · · · , r

∗
n], Pn+1 = [p0, p1, · · · , pn],

P ∗
n+1 = [p∗0, p

∗
1, · · · , p

∗
n]. Then

1. Range(Rn+1) = Range(Pn+1) = Kn+1(A, r0),

2. Range(R∗
n+1) = Range(P ∗

n+1) = Kn+1(A
H , r∗0),

3. (R∗
n+1)

HARn+1 is diagonal,

4. (P ∗
n+1)

HA2Pn+1 is diagonal.

Similarly to the BiCG method, there exist two possible kinds of breakdowns in the BiCOR

method. Jing et al. [28,29] used the composite step technique [25-27] to handle the breakdowns

of the BiCOR method.

As observed from the BiCOR method, the vectors rj , pj, r
∗
j , p

∗
j can be expressed as follows

rj = φj(A)r0, pj = ψj(A)r0, (2.2)

r∗j = φj(A
H)r∗0 , p

∗
j = ψj(A

H)r∗0 , (2.3)

where φj(t), ψj(t) ∈ Pj . These scalar polynomials are related by the following recurrence

formulas {
φj+1(t) = φj(t)− αjtψj(t),

ψj+1(t) = φj+1(t) + βj+1ψj(t).
(2.4)

Using the corresponding polynomial representations of residual and direction vectors, the iter-

ation coefficients αj and βj+1 can be computed as follows

αj =
〈r∗j , Arj〉

〈AHp∗j , Apj〉
=

〈φj(A
H)r∗0 , Aφj(A)r0〉

〈AHψj(AH)r∗0 , Aψj(A)r0〉
=

〈r∗0 , Aφ
2
j (A)r0〉

〈r∗0 , A
2ψ2

j (A)r0〉
(2.5)

Generalized Conjugate A-Orthogonal Residual Squared Method 251

and

βj+1 =
〈r∗j+1, Arj+1〉

〈r∗j , Arj〉
=

〈φj+1(A
H)r∗0 , Aφj+1(A)r0〉

〈φj(AH)r∗0 , Aφj(A)r0〉
=

〈r∗0 , Aφ
2
j+1(A)r0〉

〈r∗0 , Aφ
2
j (A)r0〉

, (2.6)

which lead to the CORS method. See [15,16] for more details.

3. The Generalized CORS Method

In this section, we construct a new product-type method based on the BiCOR method. Its

residual satisfies rj = φ̃j(A)φj(A)r0, where φj is the BiCOR polynomial and φ̃j is a polynomial

defined by the following coupled two-term recurrence

φ̃0(0) = ψ̃0(0) = 1, (3.1a)

φ̃j+1(t) = φ̃j(t)− α̃jtψ̃j(t), (3.1b)

ψ̃j+1(t) = φ̃j+1(t) + β̃j+1ψ̃j(t). (3.1c)

For convenience, the vectors pj, p
∗
j , rj , and r

∗
j generated by the BiCOR method are replaced

by pBiCOR
j , p̃BiCOR

j , rBiCOR
j , and r̃BiCOR

j , respectively. φ̃j(A) and ψ̃j(A) are abbreviated as

φ̃j and ψ̃j , respectively.

Now, we attempt to compute rj+1 = φ̃j+1r
BiCOR
j+1 . We will assume that iteration coefficients

α̃j and β̃j+1 are explicitly given, and the vectors ψ̃jp
BiCOR
j , ψ̃jr

BiCOR
j+1 , and φ̃j+1p

BiCOR
j have

been known at the j-th step. Using the recurrence relations (3.1), it follows from

rBiCOR
j+1 = rBiCOR

j − αjAp
BiCOR
j , pBiCOR

j+1 = rBiCOR
j+1 + βj+1p

BiCOR
j ,

that the following recurrence relations hold

φ̃j+1p
BiCOR
j+1 = φ̃j+1r

BiCOR
j+1 + βj+1φ̃j+1p

BiCOR
j , (3.2a)

ψ̃j+1p
BiCOR
j+1 = ψ̃j+1r

BiCOR
j+1 + βj+1ψ̃j+1p

BiCOR
j , (3.2b)

ψ̃j+1r
BiCOR
j+1 = φ̃j+1r

BiCOR
j+1 + β̃j+1ψ̃jr

BiCOR
j+1 , (3.2c)

ψ̃j+1p
BiCOR
j = φ̃j+1p

BiCOR
j + β̃j+1ψ̃jp

BiCOR
j , (3.2d)

ψ̃jr
BiCOR
j+1 = ψ̃jr

BiCOR
j − αjAψ̃jp

BiCOR
j , (3.2e)

φ̃j+1p
BiCOR
j = φ̃jp

BiCOR
j − α̃jAψ̃jp

BiCOR
j , (3.2f)

φ̃jr
BiCOR
j+1 = φ̃jr

BiCOR
j − αjAφ̃jp

BiCOR
j , (3.2g)

φ̃j+1r
BiCOR
j+1 = φ̃jr

BiCOR
j+1 − α̃jAψ̃jr

BiCOR
j+1 . (3.2h)

Combining (3.2g) and (3.2h), we obtain

φ̃j+1r
BiCOR
j+1 = φ̃jr

BiCOR
j −A(αj φ̃jp

BiCOR
j + α̃jψ̃jr

BiCOR
j+1). (3.3)

Let
hj = φ̃j+1p

BiCOR
j , uj+1 = φ̃j+1p

BiCOR
j+1 , pj+1 = ψ̃j+1p

BiCOR
j+1 ,

rj+1 = φ̃j+1r
BiCOR
j+1 , sj = ψ̃jr

BiCOR
j+1 , tj = ψ̃jr

BiCOR
j .

(3.4)

From the recurrence relations (3.2a)-(3.2f), (3.3) and above auxiliary iterates, we can get

252 J.H. ZHANG AND H. DAI

the following iterate sequences

sj = tj − αjApj , (3.5a)

hj = uj − α̃jApj , (3.5b)

rj+1 = rj −A(αjuj + α̃jsj), (3.5c)

tj+1 = rj+1 + β̃j+1sj , (3.5d)

uj+1 = rj+1 + βj+1hj , (3.5e)

pj+1 = tj+1 + βj+1(hj + β̃j+1pj). (3.5f)

Using rj+1 = φ̃j+1(A)φj+1(A)r0 = b−Axj+1 and (3.5c), we have

xj+1 = xj + αjuj + α̃jsj . (3.6)

Now, we consider how to compute the iteration coefficients αj and βj+1. It follows from (2.4)

and (3.1b) that degrees of the polynomials ψj − φj and ψ̃j − φ̃j are less than j, respectively.

Since ApBiCOR
j is orthogonal to the Krylov subspace AHKj(A

H , r∗0), then we have

〈AH(ψj(A
H)− φj(A

H))r∗0 , Aψj(A)r0〉 = 0, (3.7a)

〈AH(ψ̃j(A
H)− φ̃j(A

H))r∗0 , Aψj(A)r0〉 = 0. (3.7b)

Therefore we obtain

〈AHψj(A
H)r∗0 , Aψj(A)r0〉 = 〈AHφj(A

H)r∗0 , Aψj(A)r0〉, (3.8a)

〈AH ψ̃j(A
H)r∗0 , Aψj(A)r0〉 = 〈AH φ̃j(A

H)r∗0 , Aψj(A)r0〉. (3.8b)

If aj and bj denote the leading coefficients of polynomials φ̃j and φj , respectively, then it

is easy to deduce aj+1 = −α̃jaj and bj+1 = −αjbj from (2.4) and (3.1b). Based on the obove

results, we have

αj =
〈r̃BiCOR

j , ArBiCOR
j 〉

〈AH p̃BiCOR
j , ApBiCOR

j 〉
=

〈φj(A
H)r∗0 , Aφj(A)r0〉

〈AHψj(AH)r∗0 , Aψj(A)r0〉

=
〈φj(A

H)r∗0 , Aφj(A)r0〉

〈AHφj(AH)r∗0 , Aψj(A)r0〉
=

〈φ̃j(A
H)r∗0 , Aφj(A)r0〉

〈AH φ̃j(AH)r∗0 , Aψj(A)r0〉

=
〈φ̃j(A

H)r∗0 , Aφj(A)r0〉

〈AH ψ̃j(AH)r∗0 , Aψj(A)r0〉
=

〈r∗0 , Aφ̃j(A)φj(A)r0〉

〈r∗0 , A
2ψ̃j(A)ψj(A)r0〉

=
〈r∗0 , Arj〉

〈r∗0 , A
2pj〉

, (3.9)

and

βj+1 =
〈r̃BiCOR

j+1 , ArBiCOR
j+1 〉

〈r̃BiCOR
j , ArBiCOR

j 〉
=

〈φj+1(A
H)r∗0 , Aφj+1(A)r0〉

〈φj(AH)r∗0 , Aφj(A)r0〉

=

bj+1

aj+1
〈φ̃j+1(A

H)r∗0 , Aφj+1(A)r0〉

bj
aj
〈φ̃j(AH)r∗0 , Aφj(A)r0〉

=
αj

α̃j

〈r∗0 , Arj+1〉

〈r∗0 , Arj〉
. (3.10)

Thus, the generalized CORS (GCORS) method is described as follows.

Generalized Conjugate A-Orthogonal Residual Squared Method 253

Algorithm 1. Generalized CORS (GCORS) method

1. compute r0 = b−Ax0 for some initial guess x0,

2. choose r∗0 = p(A)r0 such that 〈r∗0 , Ar0〉 6= 0, where p(t) is a polynomial in t (for

example, r∗0 = Ar0),

3. set u0 = t0 = r0, r̂0 = Ar0, q0 = û0 = t̂0 = r̂0, q̂0 = Aq0, ρ0 = 〈r∗0 , r̂0〉,

4. for j = 0, 1, · · · , do

5. σj = 〈r∗0 , q̂j〉,

6. αj = ρj/σj ,

7. choose α̃j ,

8. sj = tj − αjqj ,

9. ŝj = t̂j − αj q̂j ,

10. hj = uj − α̃jqj ,

11. ĥj = ûj − α̃j q̂j ,

12. xj+1 = xj + αjuj + α̃jsj ,

13. rj+1 = rj − αj ûj − α̃j ŝj ,

14. r̂j+1 = Arj+1,

15. ρj+1 = 〈r∗0 , r̂j+1〉,

16. βj+1 =
ρj+1

ρj
×

αj

α̃j
,

17. choose β̃j+1,

18. tj+1 = rj+1 + β̃j+1sj ,

19. t̂j+1 = r̂j+1 + β̃j+1ŝj ,

20. uj+1 = rj+1 + βj+1hj ,

21. ûj+1 = r̂j+1 + βj+1ĥj ,

22. qj+1 = t̂j+1 + βj+1(ĥj + β̃j+1qj),

23. q̂j+1 = Aqj+1,

24. end do.

Using the same way in [15,16,22], the variables characterized with symbol ̂ are introduced

to eliminate matrix-vector multiplications.

The CORS and BiCORSTAB methods may fit in the frame of the GCORS method. In fact,

if we choose

α̃j = αj , β̃j = βj , (3.11)

then the vector sj and hj , ŝj and ĥj , tj and uj as well as t̂j and ûj are identical, and the

GCORS method reduces to the CORS method [15,16]. If we choose

β̃j+1 = 0, α̃j = argmin
α̃j

‖φ̃jr
BiCOR
j+1 − α̃jAφ̃jr

BiCOR
j+1 ‖2, (3.12)

then the GCORS method reduces to the BiCORSTAB method [15].

254 J.H. ZHANG AND H. DAI

LetMk be any symmetric positive definite (SPD) matrix, and the norm is defined as |‖v‖|2k ≡

vHMkv, v ∈ CN . we have the following lemma.

Lemma 1. Let A ∈ CN×N , v ∈ CN , Ãk =M
1
2

k AM
− 1

2

k , then

|‖p(A)v‖|k ≤ ‖p(Ãk)‖2|‖v‖|k (3.13)

holds, where p(t) is a polynomial.

Proof. The proof is similar to that of Lemma 1 in [27], so it is omitted. �

Let x0 be an initial guess for the solution x of the linear system Ax = b, then e0 = x− x0 is

the initial error. Let xCORS
m denote the approximate solution generated by the CORS method

at m-th step. It is easy to derive respectively the following errors for the BiCOR, CORS and

GCORS methods

eBiCOR
m = x− xBiCOR

m = φm(A)e0, (3.14a)

eCORS
m = x− xCORS

m = φ2m(A)e0, (3.14b)

eGCORS
m = x− xGCORS

m = φ̃m(A)φm(A)e0. (3.14c)

Using Lemma 1, we can obtain the following error bounds for the BiCOR, CORS and GCORS

methods

|‖eBiCOR
m ‖|k ≤ inf

φm∈Pm

‖φm(Ãk)‖2|‖e0‖|k, (3.15a)

|‖eCORS
m ‖|k ≤ inf

φm∈Pm

‖φm(Ãk)‖
2
2|‖e0‖|k, (3.15b)

|‖eGCORS
m ‖|k ≤ inf

φ̃m,φm∈Pm

‖φ̃m(Ãk)φm(Ãk)‖2|‖e0‖|k. (3.15c)

The CORS method, like the CGS method, is based on squaring the residual polynomial. In

case of irregular convergence, this may lead to substantial build-up of rounding errors and worse

approximate solutions. In general, the operator φ̃n(A)φn(A) reducing r0 will not lead to a bad

amplification as the operator φ2n(A) since |φ̃n(λ)φn(λ)| is smaller than max(|φn(λ)|
2, |φ̃n(λ)|

2).

As observed from (3.15c), this situation can lead to faster and smoother convergence properties.

4. The Generalized CORS2 Method

Although two different BiCOR processes are implicitly used in the GCORS method, the

iteration steps do not need matrix-vector multiplications in addition to the ones in the GCORS

iteration process. In order to efficiently perform the GCORS iteration, we need to select the

appropriate parameters α̃j and β̃j+1. Using the similar technique in the CGS2 method [24], we

seek coefficients α̃j and β̃j+1 such that

φ̃jr0, Aψ̃jr0 ⊥ AHKj(A
H , s∗0),

for an nonzero vector s∗0 which may be chosen randomly. Similarly to the computation of

iteration coefficients αj and βj+1, it is not difficult to compute

α̃j =
〈φ̃j(A

H)s∗0, Aφ̃j(A)r0〉

〈AH ψ̃j(AH)s∗0, Aψ̃j(A)r0〉
=

〈φj(A
H)s∗0, Aφ̃j(A)r0〉

〈AHψj(AH)s∗0, Aψ̃j(A)r0〉

Generalized Conjugate A-Orthogonal Residual Squared Method 255

=
〈s∗0, Aφ̃j(A)φj(A)r0〉

〈s∗0, A
2ψ̃j(A)ψj(A)r0〉

=
〈s∗0, Arj〉

〈s∗0, A
2pj〉

, (4.1)

and

β̃j+1 =
〈φ̃j+1(A

H)s∗0, Aφ̃j+1(A)r0〉

〈φ̃j(AH)s∗0, Aφ̃j(A)r0〉

=

aj+1

bj+1
〈φj+1(A

H)s∗0, Aφ̃j+1(A)r0〉

aj

bj
〈φj(AH)s∗0, Aφ̃j(A)r0〉

=
α̃j

αj

〈s∗0, Arj+1〉

〈s∗0, Arj〉
. (4.2)

Using the above results, the GCORS2 method can be described as follows.

Algorithm 2. Generalized CORS2 (GCORS2) method

1. compute r0 = b−Ax0 for some initial guess x0,

2. choose r∗0 = p(A)r0 such that 〈r∗0 , Ar0〉 6= 0, where p(t) is a polynomial in t (for

example, p(t) = t),

3. set u0 = t0 = r0, r̂0 = Ar0, q0 = û0 = t̂0 = r̂0, q̂0 = Aq0, ρ0 = 〈r∗0 , r̂0〉,ρ̂0 = 〈s∗0, r̂0〉,

4. for j = 0, 1, · · · , do

5. σj = 〈r∗0 , q̂j〉,

6. σ̂j = 〈s∗0, q̂j〉,

7. αj = ρj/σj ,

8. α̂j = ρ̂j/σ̂j ,

9. sj = tj − αjqj ,

10. ŝj = t̂j − αj q̂j ,

11. hj = uj − α̃jqj ,

12. ĥj = ûj − α̃j q̂j ,

13. xj+1 = xj + αjuj + α̃jsj ,

14. rj+1 = rj − αj ûj − α̃j ŝj ,

15. r̂j+1 = Arj+1,

16. ρj+1 = 〈r∗0 , r̂j+1〉,

17. ρ̂j+1 = 〈s∗0, r̂j+1〉,

18. βj+1 =
ρj+1

ρj
×

αj

α̃j
,

19. β̃j+1 =
ρ̂j+1

ρ̂j
×

α̃j

αj
,

20. tj+1 = rj+1 + β̃j+1sj ,

21. t̂j+1 = r̂j+1 + β̃j+1ŝj ,

22. uj+1 = rj+1 + βj+1hj ,

23. ûj+1 = r̂j+1 + βj+1ĥj ,

24. qj+1 = t̂j+1 + βj+1(ĥj + β̃j+1qj),

25. q̂j+1 = Aqj+1,

26. end do.

256 J.H. ZHANG AND H. DAI

Compared with the CORS method, the GCORS2 method needs two matrix-vector multipli-

cations, four more vector updates and two more inner products per iteration. Similarly to the

breakdowns of the BiCOR method, there exist Lanczos breakdown and pivot breakdown for the

GCORS2 method. These two kinds of breakdowns can be cured using look-ahead techniques

[30-33] and composite step techniques [25-29], respectively. Here, we will not further discuss

this problem.

To improve the convergence of the GCORS2 method for solving the problem (1.1), it is very

effective to use the preconditioning techniques. Preconditioning can easily be incorporated by

replacing the Eq. (1.1) with

(M−1
1 AM−1

2)(M2x) =M−1
1 b,

and we apply the algorithm to the preconditioned system Ãx̃ = b̃ with Ã = M−1
1 AM−1

2 ,x̃ =

M2x and b̃ =M−1
1 b. In this paper we only consider the right preconditioner (i.e. M1 = I,M2 =

M), the detailed derivation is similar to [7] and the right preconditioned GCORS2 method can

be described as follows.

Algorithm 3. Right preconditioned generalized CORS2 (PGCORS2) method

1. compute r0 = b−Ax0 for some initial guess x0,

2. choose r∗0 = p(AM−1)r0 such that 〈r∗0 , AM
−1r0〉 6= 0, where p(t) is a polynomial in t

(for example, p(t) = t),

3. set Mu0 = Mt0 = M−1r0, r̂0 = AM−1r0, q0 = û0 = t̂0 = r̂0, q̂0 = AM−1q0,

ρ0 = 〈r∗0 , r̂0〉,ρ̂0 = 〈s∗0, r̂0〉,

4. for j = 0, 1, · · · , do

5. σj = 〈r∗0 , q̂j〉,

6. σ̂j = 〈s∗0, q̂j〉,

7. αj = ρj/σj ,

8. α̂j = ρ̂j/σ̂j ,

9. Msj =Mtj − αjM
−1qj ,

10. ŝj = t̂j − αj q̂j ,

11. Mhj =Muj − α̃jM
−1qj ,

12. ĥj = ûj − α̃j q̂j ,

13. xj+1 = xj + αjMuj + α̃jMsj ,

14. rj+1 = rj − αj ûj − α̃j ŝj ,

15. r̂j+1 = AM−1rj+1,

16. ρj+1 = 〈r∗0 , r̂j+1〉,

17. ρ̂j+1 = 〈s∗0, r̂j+1〉,

18. βj+1 =
ρj+1

ρj
×

αj

α̃j
,

19. β̃j+1 =
ρ̂j+1

ρ̂j
×

α̃j

αj
,

20. Mtj+1 =M−1rj+1 + β̃j+1Msj,

Generalized Conjugate A-Orthogonal Residual Squared Method 257

21. t̂j+1 = r̂j+1 + β̃j+1ŝj ,

22. Muj+1 =M−1rj+1 + βj+1Mhj ,

23. ûj+1 = r̂j+1 + βj+1ĥj ,

24. qj+1 = t̂j+1 + βj+1(ĥj + β̃j+1qj),

25. q̂j+1 = AM−1qj+1,

26. end do.

5. Numerical Examples

In this section, we present some numerical examples to empirically study the effectiveness of

Algorithm 2 and Algorithm 3 for complex non-Hermitian linear systems. Appropriate precon-

ditioning techniques can make the presented method very attractive for some kinds of complex

non-Hermitian linear systems, we only consider the right preconditioner. The test matrices

are taken from the University of Florida Sparse Matrix Collection [34]. All computations are

carried out using double precision floating point arithmetic in MATLAB 7.11 with a PC-Intel

(R) Core (TM)2 Duo CPU T6570 2.10 GHz, and 2GB RAM. The iteration is started with

the initial guess x0 = 0 in all cases. Let r∗0 = Ar0 and s∗0 = A ∗ rand(N, 1). Its, Mvs, CPU

and Res denote numbers of iterations, numbers of matrix-vector multiplications, CPU times in

seconds for computing approximate solution and final true relative residual 2-norms defined as

log10(
‖b−Ax‖2

‖b‖2
), respectively. GMRES denotes the unrestarted complex GMRES method.

Example 1. We consider a complex Toeplitz matrix A [8,10] of order 1000

A =




4 0 1 0.7

γi 4 0 1 0.7

γi 4 0 1
. . .

γi 4 0
. . .

. . .
. . .

. . .




.

with the symbol f(z) = γiz−1 + 4 + z2 + 0.7z3. By varying parameter γ, we can obtain

the resulting spectra and pseudospectra to be associated with the symbol f(z). Thus the

parameter γ can have an effect on the convergence of the BiCOR, CORS, BiCORSTAB and

GCORS methods. This is confirmed by numerical results (see Table 5.1).

Table 5.1: Numerical results of the BiCOR, CORS, BiCORSTAB and GCORS2 methods.

γ BiCOR CORS BiCORSTAB GCORS2

Its CPU Res Its CPU Res Its CPU Res Its CPU Res

2.0 49 0.01 -10.055 23 0.01 -10.324 26 0.01 -10.210 23 0.01 -10.243

2.5 100 0.03 -10.544 50 0.03 -10.069 38 0.01 -10.044 34 0.02 -10.163

2.7 126 0.03 -10.487 500 0.20 -8.193 47 0.02 -10.209 48 0.02 -10.467

3.0 180 0.05 -10.053 500 0.18 4.538 64 0.02 -10.014 69 0.03 -10.082

3.2 500 0.12 -4.006 500 0.19 -0.208 91 0.03 -10.155 90 0.04 -10.262

3.5 500 0.12 -2.638 500 2.72 NaN 253 0.08 -10.007 171 0.07 -10.246

3.6 500 0.12 0.215 500 3.88 NaN 460 0.15 -10.021 258 0.11 -10.014

258 J.H. ZHANG AND H. DAI

0 5 10 15 20 25 30 35 40 45 50
−12

−10

−8

−6

−4

−2

0

iterations

re
si

d
u

al
 n

o
rm

BiCOR
GCORS2
BiCORSTAB
CORS

0 50 100 150 200 250 300 350 400 450 500
−12

−10

−8

−6

−4

−2

0

2

4

6

iterations

re
si

d
u

al
 n

o
rm

CORS
GCORS2
BiCOR
BiCORSTAB

Fig. 5.1. The convergence history for γ = 2.0(on the left) and γ = 3.6(on the right).

0 50 100 150 200 250 300 350
−7

−6

−5

−4

−3

−2

−1

0

1

iterations

re
si

d
u

al
 n

o
rm

CORS
GCORS2
BiCOR
BiCORSTAB

0 50 100 150 200 250 300 350 400 450 500
−7

−6

−5

−4

−3

−2

−1

0

1

2

iterations

re
si

d
u

al
 n

o
rm

CORS
GCORS2
BiCOR
BiCORSTAB

Fig. 5.2. The convergence history for light in tissue(on the left) and kim1(on the right).

We set the right-hand side b = Ae, where e is the N × 1 vector whose elements are all equal

to unity. Then x = (1, 1, · · · , 1)T is the exact solution of Ax = b. The stopping criterion is
‖rj‖2

‖r0‖2
≤ 10−10. The maximum iteration count is set to 500. Note that the NaN returns the

IEEE arithmetic representation for not-a-number.

Based on the data in Table 5.1, several observations may be concluded. First, for γ = 2, the

four methods return well convergence properties, and the GCORS2 method converges faster

and exhibits much smoother convergence behavior than the other methods as seen from Fig.

5.1 (on the left), and the CORS method gets the most accurate results. Second, for γ > 2.5, the

CORS method begins to diverge, however, the GCORS2 method converges and is competitive

with the BiCOR and BiCORSTAB methods. Third, for γ = 3.5, 3.6, as seen from Fig. 5.1 (on

the right), the GCORS2 method only requires respectively about 67.6% and 56.1% in terms

of Its of the BiCORSTAB method. In the figure, we plot the relative residual 2-norms (in the

logarithmic scale) versus the iterations.

Example 2. In this example, we use the following matrices: young1c, light in tissue and

kim1 which arise from three representative physical problems, see [34] for more details. We

set the right-hand side b = (i, · · · , i)T . The iterations are stopped when
‖rj‖2

‖r0‖2
≤ 10−6. The

maximum iteration count is set to 500. As observed from Table 5.2, the GCORS2 method

requires less iteration steps and CUP times than other three methods and reaches the highest

precision in terms of Res in most cases. The CORS method obtains the most accurate results

Generalized Conjugate A-Orthogonal Residual Squared Method 259

Table 5.2: Numerical results of the BiCOR, CORS, BiCORSTAB and GCORS2 methods.

matrices BiCOR CORS BiCORSTAB GCORS2

Its CPU Res Its CPU Res Its CPU Res Its CPU Res

light in tissue 320 4.19 -6.043 260 4.25 -6.017 290 5.11 -6.081 240 5.20 -6.236

kim1 454 10.88 -6.023 195 5.57 -6.956 398 11.27 -6.077 146 4.79 -6.149

young1c 205 0.05 -6.037 500 1.80 0.079 386 0.11 -6.080 198 0.07 -6.176

Table 5.3: Numerical results of the BiCOR, CORS, BiCORSTAB, GCORS2 and GMRES methods.

matrices BiCOR CORS BiCORSTAB GCORS2 GMRES

Its CPU Res Its CPU Res Its CPU Res Its CPU Res Its CPU Res

young2c 319 0.07 -6.01 500 0.17 5.04 314 0.09 -6.01 192 0.07 -6.03 274 3.01 -6.01

young4c 500 0.11 -4.50 500 0.16 1.89 500 0.15 -4.85 399 0.16 -6.01 413 7.10 -6.01

for the matrix kim1, but the CORS method fails to converge for the matrix young1c, and the

GCORS2 method can do well.

As seen from Fig. 5.2, we observe that the GCORS2 method does not amplify the initial

residual as much as the CORS method does, the residual norm of the GCORS2 method stays

well below that of the CORS method and the convergence behavior of the GCORS2 method is

much smoother.

Example 3. In this example, we compare the performances of the GCORS2, CORS, BiCOR,

BiCORSTAB and unrestarted complex GMRES methods. We choose the matrices young2c and

young4c which arise from modeling acoustic scattering phenomena governed by the Helmhlotz

equation, see [34] for more details. We set the right-hand side b = Ae. The stopping criterion

is
‖rj‖2

‖r0‖2
≤ 10−6. The maximum iteration count is set to 500.

Table 5.3 and Fig. 5.3 report the results obtained with the GCORS2 method and other

four methods. From these data, we conclude that the GCORS2 method converges faster than

other four methods, however, the CORS method fails to converge for the matrices young2c

and young4c, and both the BiCOR and BiCORSTAB methods fail to converge for the matrix

young4c. Although the GMRES method often converges for the matrices young2c and young4c,

this method can suffer from high memory requirements. The GMRES method is often recom-

mended due to robustness and smoother convergence, where storage requirement is allowed.

The GCORS2 method is competitive with other four methods.

0 50 100 150 200 250 300 350 400 450 500
−8

−6

−4

−2

0

2

4

6

8

iterations

re
si

d
u

al
 n

o
rm

CORS
GCORS2
BiCOR
BiCORSTAB
GMRES

0 50 100 150 200 250 300 350 400 450 500
−8

−6

−4

−2

0

2

4

6

iterations

re
si

d
u

al
 n

o
rm

CORS
GCORS2
BiCOR
BiCORSTAB
GMRES

Fig. 5.3. The convergence history for young2c (on the left) and young4c (on the right).

260 J.H. ZHANG AND H. DAI

−800 −600 −400 −200 0 200 400
−40

−35

−30

−25

−20

−15

−10

−5

0

Real part

Im
ag

in
ar

y
p

ar
t

−800 −600 −400 −200 0 200 400
−40

−35

−30

−25

−20

−15

−10

−5

0

Real part

Im
ag

in
ar

y
p

ar
t

Fig. 5.4. The spectrum of the matrices young2c (on the left) and young4c (on the right).

Fig. 5.4 shows the spectra of the matrices young2c and young4c, which have large imaginary

components. This figure may also give some reason why the GCORS2 method performs better

than other four methods in these two cases. Jing et al. [15] analyzed the same problem. Using

the idea of the BiCGSTAB2 method [8], Zhao and Huang [22] proposed the BiCORSTAB2

method that generated better results than the BiCORSTAB method in this situation. Similarly

to the BiCGSTAB(l) and GPBiCG methods [9,10], some new methods may be developed to

solve this problem.

Example 4. In this example, we compare the performances of the GCORS2 and CGS2 methods

[24]. We choose the matrices ted AB unscaled and young2c [34], and set the right-hand side

b = Ae. The iterations are stopped when
‖rj‖2

‖r0‖2
≤ 10−6. As seen from Fig. 5.5, the GCORS2

method requires less iteration steps and shows smoother convergence behavior than the CGS2

method, especially for the matrix ted AB unscaled.

Example 5. We consider the matrices kim1 and A arising in the central difference discretization

of the Helmholtz equation [35]




∆u + k2u = 0, (x, y) ∈ [0, π]× [0, π],

ux(0, y) = i
√
k2 − 1/4 cos(y/2),

ux(π, y)− i
√
k2 − 1/4u = 0,

uy(x, 0) = u(x, π) = 0.

(5.1)

The stepsizes along both x and y directions are same, i.e. h = π/m. Different parameters k

Table 5.4: Numerical results of the CORS, GCORS2, CGS, BiCGSTAB and IDR(s) methods.

methods matrix A1 matrix A2 kim1

Mvs CPU Res Mvs CPU Res Mvs CPU Res

CORS 993 0.48 -8.13 835 0.62 -8.10 315 4.21 -8.04

GCORS2 929 0.46 -8.21 811 0.66 -8.34 267 4.12 -8.22

CGS 1049 0.50 -8.31 907 0.72 -8.04 391 5.63 -8.50

BiCGSTAB 1601 0.49 -2.36 1601 0.81 -2.45 595 6.69 -8.02

IDR(2) 1407 0.75 -8.41 868 0.73 -8.06 661 10.00 -8.00

IDR(4) 760 0.47 -8.07 547 0.54 -8.06 434 8.66 -8.06

IDR(6) 632 0.48 -8.13 492 0.53 -8.01 434 10.95 -8.01

Generalized Conjugate A-Orthogonal Residual Squared Method 261

0 50 100 150 200 250
−7

−6

−5

−4

−3

−2

−1

0

1

2

iterations

re
si

d
u

al
 n

o
rm

CGS2
GCORS2

0 20 40 60 80 100 120 140
−7

−6

−5

−4

−3

−2

−1

0

iterations

re
si

d
u

al
 n

o
rm

CGS2
GCORS2

Fig. 5.5. The convergence history for young2c (on the left) and ted AB unscaled (on the right).

0 200 400 600 800 1000 1200 1400 1600
−10

−5

0

5

Number of MATVECS

re
si

d
u

al
 n

o
rm

CORS
GCORS2
CGS
BiCGSTAB
IDR(2)

0 100 200 300 400 500 600
−10

−8

−6

−4

−2

0

2

Number of MATVECS

re
si

d
u

al
 n

o
rm

CORS
GCORS2
CGS
BiCGSTAB
IDR(6)

Fig. 5.6. The convergence history for matrix A2 (on the left) and kim1 (on the right).

lead the linear systems to be highly indefinite. We only test the following two cases: the matrix

A1 for m=50, k=4.16 and the matrix A2 for m=60, k=2.62. We compare the performances of

the CORS, GCORS2, CGS, BiCGSTAB, and IDR(s) methods [36,37], and set the right-hand

side b = Ae. The iterations are stopped when
‖rj‖2

‖r0‖2
≤ 10−8.

Computational results are given in Table 5.4 and Fig. 5.6. For the matrix kim1, the

GCORS2 method returns the best convergence result in terms of Mvs and CPU, and provides

the secondly accuracy in terms of Res. For the matrices A1 and A2, the GCORS2 method

requires less Mvs than the CORS, CGS, BiCGSTAB and IDR(2) methods, and converges

smoother than the CORS and CGS methods, and the BiCGSTAB method fails to converge.

The IDR(s) method, which was recently developed by Sonneveld and van Gijzen [36,37], is a

family of simple and fast algorithm for solving complex non-Hermitian linear systems and can

be competitive with the Krylov subspace methods. As seen from Table 5.4, the IDR(4) and

IDR(6) methods demonstrate excellent numerical results for the matrices A1 and A2.

Example 6. In this example, we compare the performances of the right preconditioned CORS,

GCORS2 and BiCORSTAB methods with the ILU(0) [38] or ILUT (0.04) [39] preconditioners.

ILU(0)-PCORS, ILU(0)-PGCORS2 and ILU(0)-PBiCORSTAB denote the right preconditioned

CORS, GCORS2 and BiCORSTAB methods with the ILU(0) preconditioner. ILUT-PCORS,

ILUT-PGCORS2 and ILUT-PBiCORSTAB denote the right preconditioned CORS, GCORS2

and BiCORSTAB methods with the ILUT (0.04) preconditioner. We choose the matrices

ted AB, chevron1, kim1, young1c, young2c and young4c [34], and set the right-hand side

262 J.H. ZHANG AND H. DAI

Table 5.5: Numerical results of the right preconditioned CORS, GCORS2 and BiCORSTAB methods.

methods chevron1 ted AB kim1

Its CPU Res Its CPU Res Its CPU Res

ILU(0)-PCORS 293 9.14 -6.03 640 16.68 -6.63 4 0.37 -7.00

ILU(0)-PGCORS2 258 8.89 -6.05 562 15.23 -6.60 4 0.37 -6.89

ILU(0)-PBiCORSTAB 398 12.53 -6.04 1000 26.19 -4.29 4 0.35 -7.16

CORS 5000 75.78 12.10 5000 56.57 -0.17 100 2.79 -6.33

GCORS2 2165 42.31 -6.04 5000 59.37 -1.38 89 2.71 -6.13

BiCORSTAB 5000 80.43 -1.29 5000 54.55 -0.24 148 3.87 -6.10

methods young1c young2c young4c

Its CPU Res Its CPU Res Its CPU Res

ILUT-PCORS 24 0.05 -6.30 8 0.04 -6.62 9 0.04 -6.76

ILUT-PGCORS2 24 0.05 -6.49 8 0.03 -6.81 7 0.03 -6.98

ILUT-PBiCORSTAB 26 0.05 -6.05 7 0.03 -6.37 7 0.03 -6.37

CORS 500 0.16 -0.67 500 0.17 5.04 500 0.16 1.89

GCORS2 193 0.07 -6.06 192 0.07 -6.03 399 0.16 -6.01

BiCORSTAB 456 0.14 -6.05 314 0.09 -6.01 500 0.15 -4.85

0 5 10 15 20 25 30
−7

−6

−5

−4

−3

−2

−1

0

1

iterations

re
si

d
u

al
 n

o
rm

PCORS
PGCORS2
PBiCORSTAB

0 100 200 300 400 500 600 700 800 900 1000
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

iterations

re
si

d
u

al
 n

o
rm

PCORS
PGCORS2
PBiCORSTAB

Fig. 5.7. The convergence history for matrix young1c (on the left) and ted AB (on the right).

b = Ae. The iterations are stopped when
‖rj‖2

‖r0‖2
≤ 10−6.The maximum iteration count is set to

1000 for the preconditioned methods.

From Table 5.5, we observe that the right preconditioned CORS, GCORS2 and BiCORSTAB

methods result in fast convergence and perform better than the unpreconditioned CORS,

GCORS2 and BiCORSTAB methods in both iteration steps and CPU times. The precon-

ditioned GCORS2 method with the ILU(0) preconditioner returns the best numerical perfor-

mances for the matrices chevron1 and ted AB. In other problems, the preconditioned CORS,

GCORS2 and BiCORSTAB methods show almost the same performances. As seen from Fig.

5.7, the preconditioned GCORS2 method requires less iteration steps and shows smoother con-

vergence behavior than the preconditioned CORS and BiCORSTAB methods. However, the

preconditioned BiCORSTAB method fails to converge for the matrix ted AB.

6. Conclusion

In this paper, we have developed a new variant of the BiCOR method for solving complex

non-Hermitian linear systems. The numerical experiments show that the new method converges

Generalized Conjugate A-Orthogonal Residual Squared Method 263

faster and smoother than the BiCOR, CORS, CGS and CGS2 methods in most cases, and can

compete with the BiCGSTAB, BiCORSTAB, IDR(2) and GMRES methods in some cases.

Note that the HSS, BTSS and PSS methods can lead to high-quality preconditioners for Krylov

subspace methods, see [40,41,42] for more details. The GCORS method combined with these

preconditioners to deal with practical problems is under investigation and will be given in the

future.

Acknowledgments. The authors are grateful to the referees for their valuable comments and

suggestions which helped to improve the presentation of this paper.

The research is supported by the National Natural Science Foundation of China under grant

No.11071118, Natural Science Foundation from Anhui Province Education Department under

grant No.KJ2012B058 and AHSTU under grant No.ZRC2013388.

References

[1] V. Simoncini and D.B. Szyld, Recent computatinal developments in krylov subspace methods for

linear systems, Numer. Linear Algebra Appl., 14 (2007), 1-59.

[2] Y. Saad and M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving non-

symmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), 856-869.

[3] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Statist. Comput.,

14 (1993), 461-469.

[4] B. Carpentieri, I. Duff, L. Giraud and G. Sylvand, Combining fast multipole techniques and an ap-

proximate inverse preconditioner for large electromagnetism calculations, SIAM J. Sci. Comput.,

27 (2005), 774-792.

[5] R. Fletcher, Conjugate gradient methods for indefinite systems, Lecture Notes in Mathematics,

vol. 506, Springer-Verlag, Berlin, 1976, 73-89.

[6] P. Sonneveld, CGS: a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci.

Statist. Comput., 10 (1989), 36-52.

[7] H.A. van der Vorst, BiCGSTAB: A fast and smoothly converging variant of Bi-CG for the solution

of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), 631-644.

[8] M.H. Gutknecht, Variants of BiCGSTAB for matrices with complex spectrum, SIAM J. Sci.

Comput., 14 (1993), 1020-1033.

[9] G.L.G. Sleijpen and D.R. Fokkema, BiCGSTAB(l) for linear equations involving unsymmetric

matrices with complex spectrum, Elec. Trans. Numer. Anal., 1 (1993), 11-32.

[10] S.-L. Zhang, GPBi-CG: Generalized product-type methods based on Bi-CG for solving nonsym-

metric linear systems, SIAM J. Sci. Comput., 18 (1997), 537-551.

[11] M.C. Yeung and T.F. Chan, ML(K)BiCGSTAB: A BiCGSTAB variant based on multiple Lanczos

starting vectors, SIAM J. Sci. Comput., 21 (1999), 1263-1290.

[12] R.W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems,

SIAM J. Sci. Comput., 14 (1993), 470-482.

[13] R.W. Freund and N.M. Nachtigal, QMR: a quasi-minimal residual method for non- Hermitian

linear systems, Numer. Math., 60 (1991), 315-339.

[14] T. Malas and L. Gürel, Incomplete LU preconditioning with multilevel fast multipole algorithm

for electromagnetic scattering, SIAM J. Sci. Comput., 29 (2007), 1476-1494.

[15] Y.F. Jing, T.Z. Huang, Y. Zhang, L. Li, G.H. Cheng, Z.G. Ren, Y. Duan, T. Sogabe and B.

Carpentieri, Lanczos-type variants of the COCRmethod for complex nonsymmetric linear systems,

J. Comput. Phys., 228 (2009), 6376-6394.

[16] B. Carpentieri, Y.F. Jing and T.Z. Huang, The BiCOR and CORS iterative algorithms for solving

nonsymmetric linear systems, SIAM J. Sci. Comput., 33 (2011), 3020-3036.

264 J.H. ZHANG AND H. DAI

[17] T. Sogabe and S.-L. Zhang, A COCR method for solving complex symmetric linear systems, J.

Comput. Appl. Math., 199 (2007), 297-303.

[18] M.H. Gutknecht, The unsymmetric Lanczos algorithms and their relations to Pade approximation,

continued fractions, and the qd algorithm, Proc. of the Copper Mountain Conference on Iterative

Methods, April 1990, http://www.sam.math.ethz.ch/ mhg/pub/CopperMtn90.ps.gz.

[19] Y.F. Jing, B. Carpentieri and T.Z. Huang, Experiments with Lanczos biconjugate A-

orthonormalization methods for MoM discretizations of Maxwell’s equations, Progress In Elec-

tromagnetics Research., 99 (2009), 427-451.

[20] Y.F. Jing, T.Z. Huang, Y. Duan and B. Carpentieri, A comparative study of iterative solutions

to linear systems arising in quantum mechanics, J. Comput. Phys., 229 (2010), 8511-8520.

[21] B. Carpentieri, Y.F. Jing, T.Z. Huang, W.C. Pi and X.Q. Sheng, Combining the CORS and

BiCORSTAB iterative methods with MLFMA and SAI preconditioning for solving large linear

systems in electromagnetics, Applied Computational Electromagnetics Society (ACES) Journal.,

27 (2012), 102-111.

[22] L. Zhao and T.Z. Huang, A hybrid variant of the BiCOR method for a nonsymmetric linear system

with a complex spectrum, Applied Mathematics Letters., 26 (2013), 457-462.

[23] L. Zhao, T.Z. Huang, Y.F. Jing and L.J. Deng, A generalized product-type BiCOR method and

its application in signal deconvolution, Computers and Mathematics with Applications., 66(8)

(2013), 1372-1388.

[24] D.R. Fokkema, G.L.G. Sleijpen and H.A. van der Vorst, Generalized conjugate gradient squared,

J. Comput. Appl. Math., 71 (1996), 125-146.

[25] R.E. Bank and T.F. Chan, An analysis of the composite step biconjugate gradient method, Numer.

Math., 66 (1993), 295-319.

[26] R.E. Bank and T.F. Chan, A composite step biconjugate gradient algorithm for nonsymmetric

linear systems, Numer. Algo., 7 (1994), 1-16.

[27] T.F. Chan and T. Szeto, Composite step product methods for nonsymmetric linear systems, SIAM

J. Sci. Comput., 17 (1996), 1491-1508.

[28] Y.F. Jing, T.Z. Huang, B. Carpentieri and Y. Duan, Investigating the composite step biconjugate

A-Orthogonal residual method for non-Hermitian dense linear systems in electromagnetics, Applied

Computational Electromagnetics Society (ACES) Journal., 27 (2012), 112-122.

[29] Y.F. Jing, T.Z. Huang, B. Carpentieri and Y. Duan, Exploiting the composite step strategy to the

biconjugate A-orthogonal residual method for non-Hermitian linear systems, Journal of Applied

Mathematics., vol. 2013 (2013), Article ID 408167, 16 pages. doi:10.1155/2013/408167.

[30] B. Parlett, D. Taylor and Z.S. Liu, A look-ahead Lanczos algorithm for unsymmetric matrices,

Math. Comp., 44 (1985), 105-124.

[31] C. Brezinski, M.R. Zaglia and H. Sadok, A breakdown-free Lanczos type algorithm for solving

linear systems, Numer. Math., 63 (1992), 29-38.

[32] C. Brezinski, M.R. Zaglia and H. Sadok, New look-ahead Lanczos-type algorithms for linear

systems, Numer. Math., 83 (1999), 53-85.

[33] R. Freund, M.H. Gutknecht and N.M. Nachtigal, An implementation of the look-ahead Lanczos

algorithm for non-Hermitian matrices, SIAM J. Sci. Stat. Comput., 14 (1993), 137-158.

[34] T.A. Davis and Y.F. Hu, The University of Florida Sparse Matrix Collection, ACM Trans. Math.

Softw., Vol. 38, No. 1 (2011), Article 1, 25 pages. doi:10.1145/2049662.2049663.

[35] A. Bayliss, C.I. Glodstein and E. Turkel, An iterative method for the Helmholtz equation, J.

Comput. Phys., 49 (1983), 443-457.

[36] P. Sonneveld and M.B. Van Gijzen, IDR(s): A family of simple and fast algorithms for solving large

nonsymmetric systems of linear equations, SIAM J. Sci. Statist. Comput., 31 (2008), 1035-1062.

[37] M.B. Van Gijzen and P. Sonneveld, An elegant IDR(s) variant that efficiently exploits bi-

orthogonality properties, Report 10-16, Department of Applied Mathematical Analysis, Delft

University of Technology, Delft, The Netherlands, 2010.

Generalized Conjugate A-Orthogonal Residual Squared Method 265

[38] J.A. Meijerink and H.A. van der Vorst, An iterative solution method for linear systems of which

the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), 148-162.

[39] Y. Saad, ILUT: A dual threshold incomplete ILU factorization, Numer. Linear Algebra Appl., 1

(1994), 387-402.

[40] Z.-Z. Bai, G.H. Golub and M.K. Ng, Hermitian and skew-Hermitian splitting methods for non-

Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), 603-626.

[41] Z.-Z. Bai, G.H. Golub, L.-Z. Lu and J.-F. Yin, Block triangular and skew-Hermitian splitting

methods for positive-definite linear systems, SIAM J. Sci. Comput., 26 (2005), 844-863.

[42] Z.-Z. Bai, Splitting iteration methods for non-Hermitian positive definite systems of linear equa-

tions, Hokkaido Mathematical Journal., 36 (2007), 801-814.

