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Abstract

Recently, Bai proposed a block-counter-diagonal and a block-counter-triangular precon-

ditioning matrices to precondition the GMRES method for solving the structured system of

linear equations arising from the Galerkin finite-element discretizations of the distributed

control problems in (Computing 91 (2011) 379-395). He analyzed the spectral properties

and derived explicit expressions of the eigenvalues and eigenvectors of the preconditioned

matrices. By applying the special structures and properties of the eigenvector matrices of

the preconditioned matrices, we derive upper bounds for the 2-norm condition numbers

of the eigenvector matrices and give asymptotic convergence factors of the preconditioned

GMRES methods with the block-counter-diagonal and the block-counter-triangular pre-

conditioners. Experimental results show that the convergence analyses match well with

the numerical results.
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Key words: PDE-constrained optimization, GMRES method, Preconditioner, Condition

number, Asymptotic convergence factor.

1. Introduction

Preconditioning technique as an efficient tool has been widely applied in Krylov subspace

methods for solving linear systems arising from discretizations of partial differential equations.

In [3], Bai considered using the preconditioned Krylov subspace methods to solve the linear

system emerging from the following distributed control problem

min
u,f

1

2
‖u− u∗‖22 + β‖f‖22, (1.1)

subject to −∇2u = f in Ω, (1.2)

with u = g on ∂Ω1 and
∂u

∂n
= g on ∂Ω2, (1.3)

where the domain Ω ⊂ R2 or R3 , ∂Ω1 and ∂Ω2 are distinct, ∂Ω1∪∂Ω2 = ∂Ω and ∂Ω1∩∂Ω2 = ∅,
u∗ is the known desired state. This problem was first introduced by Lions in [10]. We need to

find u which satisfies the PDE problem (1.1)-(1.3) and is as close to u∗ as possible in L2-norm

sense. A recent reference on this topic can be found in [9].

By adopting the discretize-then-optimize approach and employing the Galerkin finite ele-

ment method in the discretization, the PDE-constrained optimization problem (1.1)-(1.3) can

be transformed into a discrete analogue of the minimization problem. By applying the Lagrange
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multiplier technique to the minimization problem, we find that f and u can be defined by the

following linear system

Ax ≡





2βM 0 −M

0 M KT

−M K 0









f

u

λ



 =





0

b

d



 ≡ g, (1.4)

where M ∈ Rm×m is the symmetric positive definite mass matrix, K ∈ Rm×m is the symmetric

stiffness matrix (the discrete Laplacian), d ∈ Rm contains the terms coming from the boundary

values of the discrete solution, b ∈ Rm is the Galerkin projection of the desired state u∗ and

λ is a vector of Lagrange multipliers, see also [7]. (1.4) is a saddle point problem if we write

it in a 2-by-2 block form, see, for instance, [1, 2, 6]. Due to the finite element discretization,

M and K are very large and sparse, the matrix A is large and sparse, too. By making use

of the easiness of matrix-vector multiplications and linear computation in Krylov subspace

methods, many preconditioned Krylov subspace methods have been proposed for solving (1.4),

see, for instance, [3, 5, 8, 11–13]. Specifically, Bai applied the preconditioned GMRES method

to solve the system (1.4) in [3]. He introduced two efficient preconditioners PBCD and PBCT

to accelerate convergence rates of the GMRES method. PBCD is a block-counter-diagonal

preconditioner of form

PBCD =





0 0 −M

0 M 0

−M 0 0



 , (1.5)

and PBCT is a block-counter-triangular preconditioner of form

PBCT =





0 0 −M

0 M KT

−M K 0



 . (1.6)

It is clearly to see that the computation of PBCD or PBCT only requires to solve three lin-

ear sub-systems with the same coefficient matrix M , and does not need to solve any linear

sub-system with coefficient matrix K. Therefore, the implementations of the preconditioned

GMRES methods with these preconditioners for (1.4) are easy and effective.

In [3], the author also gave the spectral properties of the preconditioned matrices P−1

BCD
A

and P
−1

BCT
A.

Theorem 1.1. (Theorem 2.1 in [3]) Let A ∈ R3m×3m be the coefficient matrix of the saddle-

point problem (1.4) and PBCD ∈ R3m×3m be the block-counter-diagonal preconditioner of A

defined in (1.5). Assume that vl is an eigenvalue and x(l) ∈ Cm is the corresponding eigenvector

of the matrix M−1KM−1KT ∈ R
m×m, l = 1, . . . ,m, where vl > 0 (l = 1, . . . ,m). Then

1. the eigenvalues of the preconditioned matrix P
−1

BCD
A are

λ
(l)
k := 1− 3

√

2βvle
(2k+1)πı

3 , k = 0, 1, 2, l = 1, . . . ,m,

where ı denotes the imaginary unit;

2. the eigenvectors of the preconditioned matrix P
−1

BCD
A are





x(l)

0

0



 ,





0

−M−1KTx(l)

0



 and





0

0

x(l)



 , l = 1, . . . ,m.
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Theorem 1.2. (Theorem 3.1 in [3]) Let A ∈ R3m×3m be the coefficient matrix of the saddle-

point problem (1.4) and PBCT ∈ R3m×3m be the block-counter-triangular preconditioner of A

defined in (1.6). Assume that vl is an eigenvalue and x(l) ∈ Cm is the corresponding eigenvector

of the matrix M−1KM−1KT ∈ Rm×m, l = 1, . . . ,m, where vl > 0 (l = 1, . . . ,m). Then

1. the eigenvalues of the preconditioned matrix P
−1

BCT
A are 1 with algebraic multiplicity 2m,

and 2βvl + 1, l = 1, 2, . . . ,m;

2. the eigenvectors of the preconditioned matrix P
−1

BCT
A are





0

y

z



 , ∀y, z ∈ C
m\{0},





−vlx
(l)

−M−1KTx(l)

x(l)



 , l = 1, . . . ,m.

Based on Theorems 1.1 and 1.2, the following remarks can be easily obtained.

Remark 1.1. Let M ,K ∈ Rm×m be the block matrices of the saddle-point problem (1.4).

Assume that vl is an eigenvalue and x(l) ∈ Cm is the corresponding eigenvector of the ma-

trix M−1KM−1KT ∈ Rm×m, l = 1, 2, . . . ,m, where vl > 0 (l = 1, 2, . . . ,m). Let Λ =

diag(v1, v2, · · · , vm), and X ∈ Cm×m be an eigenvector matrix of M−1KM−1KT , that is,

the lth column of X is x(l) (l = 1, 2, · · · ,m). Then M−1KM−1KT can be diagonalized as

M−1KM−1KT = XΛX−1.

Remark 1.2. Since M−1KM−1KT ∈ Rm×m is diagonalizable, the preconditioned matri-

ces P
−1

BCD
A and P

−1

BCT
A ∈ R3m×3m can be diagonalizable, too. And if the eigenvalues of

M−1KM−1KT are clustered or if β is small, then the eigenvalues of P−1

BCD
A and P

−1

BCT
A

are clustered, too.

Remark 1.3. The splittings A = PBCD−RBCD andA = PBCT −RBCT of the saddle-point

matrix A ∈ R3m×3m, induced by PBCD and PBCT , are convergent if and only if the matrix

2βM−1KM−1KT is convergent. Moreover, it holds that

ρ(P−1

BCD
RBCD) ≤ 3

√

2βρ(M−1KM−1KT ),

ρ(P−1

BCT
RBCT ) ≤ 2βρ(M−1KM−1KT ),

with ρ(·) representing the spectral radius of the corresponding matrix.

When we apply the GMRES method to solve a linear system with a nonsingular coefficient

matrix B ∈ R3m×3m, it is well known that if B is diagonalizable with its eigenvector matrix

E, then the 2-norm k-th residual of the GMRES method is bounded from above as

RES =
‖rk‖2
‖r0‖2

≤ κ2(E) min
p∈Pk,p(0)=1

max
λ∈E(B)

| pk(λ) |, (1.7)

where κ2(E) is the 2-norm condition number of matrix E, Pk is the set of polynomials of degree

not greater than k, and E(B) is a set containing the spectra of matrix B, the details can be

found in [4, 14]. The convergence of GMRES is therefore essentially bounded by quantity

ρk(E(B)) = min
p∈Pk,p(0)=1

max
λ∈E(B)

| pk(λ) | .
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The corresponding asymptotic convergence factor (see [15]) is defined by

ρ(E(B)) = (ρk(E(B)))
1
k .

In this paper, we focus on the estimations of κ2(E) and ρ(E(B)) for the preconditioned matrices

B = P
−1

BCD
A and B = P

−1

BCT
A, respectively.

ρ(E(B)) can be estimated by utilizing the following corollary.

Corollary 1.1. Let B be a diagonalizable matrix; i.e., B = EΛE−1, where Λ = diag(λ1, λ2,

. . . , λn) is the diagonal matrix of the eigenvalues of B. Assume that all eigenvalues of B

are located in the ellipse E(a, b, c, d) with center d, foci d ± c and semi-axis a and b, where

c2 = a2−b2. Note that the ellipse E(a, b, c, d) has either real or complex conjugate foci depending

on the sign of a − b. Then the asymptotic convergence factor of the GMRES method on this

ellipse can be bounded by

ρ(E(B)) =
a+ b

d+
√
d2 − c2

.

We refer the readers to [4, 14] for details.

The outline of this paper is as follows. In Section 2, we give convergence analyses for the

preconditioned GMRES methods with the block-counter-diagonal preconditioner PBCD and

the block-counter-triangular preconditioner PBCT for solving (1.4), respectively. In Section 3,

numerical examples are performed to illustrate the theoretical results. Finally, in Section 4, we

use a brief conclusion to end the paper.

2. The Convergence Analysis for the Preconditioned GMRES

We consider the convergence properties of the preconditioned GMRES methods when solving

(1.4) with preconditioners PBCD and PBCT , respectively.

2.1. Convergence for the Preconditioned GMRES with PBCD

Firstly, we focus on analyzing the preconditioned matrix P
−1

BCD
A. For simplicity, we denote

APBCD = P
−1

BCD
A. From Theorem 1.1 and Remark 1.1, the eigenvector matrix XPBCD of

the preconditioned matrix APBCD can be written as

XPBCD = diag(X ,−M−1KTX,X). (2.1)

Remark 1.2 shows that the preconditioned matrix APBCD is diagonalizable, i.e.,

APBCD = XPBCDΛPBCDX
−1

PBCD

with ΛPBCD being a diagonal matrix whose diagonal elements are the eigenvalues of the

preconditioned matrix APBCD defined in Theorem 1.1. The following lemma shows that there

exists an eigenvector matrix X such that M
1
2X is orthogonal.

Lemma 2.1. Let M ,K ∈ Rm×m be the block matrices of the saddle-point problem (1.4), then

M− 1
2KM−1KTM− 1

2 is similar to M−1KM−1KT . In addition, there exists an eigenvector

matrix X
′ ∈ Cm×m of M−1KM−1KT such that M

1
2X

′

is orthogonal.
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Proof. Let P be an orthogonal eigenvector matrix of the symmetric matrixM− 1
2KM−1KT

M− 1
2 . Since

M
1
2 (M−1KM−1KT )M− 1

2 = M− 1
2KM−1KTM− 1

2 ,

the matrix M− 1
2KM−1KTM− 1

2 is similar to M−1KM−1KT by M
1
2 , and X

′

= M− 1
2P

is an eigenvector matrix of M−1KM−1KT , it easily follows that M
1
2X

′

is an orthogonal

matrix. �

For the condition number of the matrix XPBCD with matrix X = X
′

defined in Lemma

2.1, we have the following theorem.

Theorem 2.1. Let A ∈ R3m×3m be the coefficient matrix of the saddle-point problem (1.4),

PBCD ∈ R3m×3m be the block-counter-diagonal preconditioner of A defined in (1.5), and

XPBCD ∈ R3m×3m be the eigenvector matrix of the preconditioned matrix P
−1

BCD
A defined

in (2.1). Assume that vl is an eigenvalue of M−1KM−1KT ∈ R
m×m, l = 1, 2, . . . ,m, and

Λ = diag(v1, v2, · · · , vm), where vl > 0. Then

κ2(XPBCD) = ‖XPBCD‖2‖X−1

PBCD
‖2

≤ κ2(M)

√

max
1≤l≤m

{vl, 1} max
1≤l≤m

{v−1
l , 1}. (2.2)

Proof. Let

R = diag(M
1
2 ,M

1
2K−TM ,M

1
2 ), C = RAPBCDR−1.

Then C is similar to APBCD and

C = RXPBCDΛPBCDX
−1

PBCD
R−1 = Y ΛPBCDY −1,

where

Y = RXPBCD = diag(M
1
2X,−M

1
2X,M

1
2X).

From Lemma 2.1, M
1
2X is an orthogonal matrix, we immediately know that Y is also orthog-

onal and XPBCD = R−1Y . Therefore,

‖XPBCD‖22 = ρ(XPBCDXT

PBCD
) = ρ(R−1Y Y TR−T ) = ‖R−1‖22,

‖X−1

PBCD
‖22 = ρ(X−T

PBCD
X

−1

PBCD
) = ρ(RTY −TY −1R) = ‖R‖22.

Consequently,

‖XPBCD‖2‖X−1

PBCD
‖2 = κ2(R). (2.3)

By direct computations we have

RTR = WU ,

where

W = diag(M ,M ,M), (2.4)

and U can be expressed as

U = diag(I,K−1MK−TM , I) = diag(I,XΛ−1X−1, I), (2.5)

based on Remark 1.1, I ∈ Rm×m is the identity matrix. As it holds that

‖W ‖2 = ‖M‖2, (2.6)



On Block Preconditioners for PDE-Constrained Optimization Problems 277

we have

‖R‖22 = ‖RTR‖2 = ‖WU‖2 ≤ ‖M‖2‖U‖2, (2.7)

‖R−1‖22 = ‖R−1R−T ‖2 = ‖U−1W−1‖2 ≤ ‖U−1‖2‖M−1‖2. (2.8)

From (2.3), (2.7) and (2.8), it is easy to obtain

‖XPBCD‖22‖X−1

PBCD
‖22 ≤ κ2(M)κ2(U). (2.9)

It follows from (2.5) that

κ2(U) = max{‖XΛX−1‖2, 1}max{‖XΛ−1X−1‖2, 1}
≤ ‖X‖22‖X−1‖22 max

1≤l≤m
{vl, 1} max

1≤l≤m
{v−1

l , 1}.

Note that the matrix D = M
1
2X is orthogonal, and X = M− 1

2D. So

‖X‖22 = ρ(M− 1
2DDTM− 1

2 ) = ρ(M−1) = ‖M−1‖2, (2.10)

‖X−1‖22 = ρ(M
1
2D−TD−1M

1
2 ) = ρ(M ) = ‖M‖2. (2.11)

We have

κ2(U) ≤ κ2(M) max
1≤l≤m

{vl, 1} max
1≤l≤m

{v−1
l , 1}. (2.12)

The desired result (2.2) then follows from (2.9) and (2.12). �

Now we consider the asymptotic convergence factor of the GMRES method on the ellipse

containing the eigenvalues of the preconditioned matrix P
−1

BCD
A. We have shown in Theorem

1.1 that the eigenvalues of the preconditioned matrix are enclosed in the rectangle

[1− q, 1 + q]× [−q, q],

where

q = max
1≤l≤m

| 3
√

2βvl|,

see also [4]. To estimate the asymptotic convergence rate of the preconditioned GMRES method

based on Corollary 1.1, we compute an ellipse E(a1, b1, c1, d1) of the estimated smallest area

containing this rectangle. Because the center of the rectangle is (τ1, 0), where τ1 = 1, and the

lengths of the sides of the rectangle are χ1 = 2q and ω1 = 2q. The ellipse E(a1, b1, c1, d1) which
has the smallest area of all ellipses and encloses the rectangle is given by

a1 =

√
2

2
χ1, b1 =

√
2

2
ω1, c1 =

√
2

2

√

|ω2
1 − χ2

1|, d1 = τ1.

Hence

ρk(E(P
−1

BCD
A)) =

χ1 + ω1√
2τ1 +

√

2τ21 − |χ2
1 − ω2

1 |
=

√
2q. (2.13)

It follows from (2.13) that when

0 ≤ q <

√
2

2
≃ 0.7071,

the asymptotic convergence factor ρk(E(P
−1

BCD
A)) < 1. By substituting (2.2) and (2.13) into

(1.7), we have the k-th 2-norm residual of the preconditioned GMRES with preconditioner

PBCD as

RESPBCD =
‖rk‖2
‖r0‖2

≤ (
√
2q)kκ2(M)

√

max
1≤l≤m

{vl, 1} max
1≤l≤m

{v−1
l , 1}.
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2.2. Convergence for the Preconditioned GMRES with PBCT

Now we focus on analyzing the preconditioned matrix P
−1

BCT
A. For simplicity, we de-

note APBCT = P
−1

BCT
A. Theorem 1.2 and Remark 1.2 show that the preconditioned matrix

APBCT can be diagonalized as

APBCT = XPBCTΛPBCTX
−1

PBCT
,

with ΛPBCT being a diagonal matrix whose diagonal elements are eigenvalues of the precondi-

tioned matrix APBCT defined in Theorem 1.2, and XPBCT is the corresponding eigenvector

matrix. By using Remark 1.1, the eigenvector matrix XPBCT of the preconditioned matrix

APBCT can be expressed as

XPBCT =





0 0 −M−1KM−1KTX

O21 O22 −M−1KTX

O31 O32 X



 , (2.14)

where X,Λ are defined in Remark 1.1, O21, O22, O31 and O32 ∈ Cm×m are the matrices which

are determined in the second part of Theorem 1.2.

For the condition number of the matrix XPBCT with matrix X = X
′

defined in Lemma

2.1, we have the following theorem.

Theorem 2.2. Let A ∈ R3m×3m be the coefficient matrix of the saddle-point problem (1.4)

and PBCT ∈ R3m×3m be the block-counter-triangular preconditioner of A defined in (1.6),

XPBCT ∈ R3m×3m be the eigenvector matrix of the preconditioned matrix P
−1

BCT
A defined

in (2.14). Assume that vl is an eigenvalue of M−1KM−1KT ∈ Rm×m, l = 1, . . . ,m, and

Λ = diag(v1, v2, · · · , vm), where vl > 0. Then

κ2(XPBCT ) = ‖XPBCT ‖2‖X−1

PBCT
‖2

≤ (2 +
√
3)κ2(M )

√

max
1≤l≤m

{v2l , vl, 1} max
1≤l≤m

{v−2
l , v−1

l , 1}. (2.15)

Proof. Let

L = diag(M
1
2K−TMK−1M ,M

1
2K−TM ,M

1
2 ).

By defining

Q =





I 0 0

−I I 0

I 0 I





with I ∈ Rm×m being the identity matrix, we let

S = QL =







M
1
2K−TMK−1M 0 0

−M
1
2K−TMK−1M M

1
2K−TM 0

M
1
2K−TMK−1M 0 M

1
2






(2.16)

and

F = SAPBCTS
−1.

F is similar to APBCT and can be written as

F = SXPBCTΛPBCTX
−1

PBCT
S−1 = ZΛPBCTZ

−1,
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where

Z = SXPBCT =







0 0 −M
1
2X

Ō21 Ō22 0

Ō31 Ō32 0






, (2.17)

X is defined in Remark 1.1. Hence, we have

Ō21 = M
1
2K−TMO21, Ō22 = M

1
2K−TMO22,

Ō31 = M
1
2O31, Ō32 = M

1
2O32.

Under the restrictions of Theorem 1.2 for (2.14), we select matrices

O21 = M−1KTX, O22 = 0, O31 = 0, O32 = X.

Then
(

Ō21 Ō22

Ō31 Ō32

)

=

(

M
1
2X 0

0 M
1
2X

)

. (2.18)

By substituting (2.18) into (2.17), we easily know that the matrix Z is orthogonal. Since

XPBCT = S−1Z, we have

‖XPBCT ‖22 = ρ(XPBCTXPBCT
T ) = ρ(S−1S−T ) = ‖S−1‖22, (2.19)

‖X−1

PBCT
‖22 = ρ(X−1

PBCT
(X−1

PBCT
)T ) = ρ(SST ) = ‖S‖22. (2.20)

It follows from (2.16), (2.19) and (2.20) that

‖XPBCT ‖2‖X−1

PBCT
‖2 = ‖S−1‖2‖S‖2 ≤ κ2(Q)κ2(L). (2.21)

It follows from straightforward computations that

LTL = WV ,

where W is defined in (2.4) and

V = diag((K−TMK−1M)2,K−1MK−TM , I).

From (2.6), we obtain

‖L‖22 = ‖LTL‖2 = ‖WV ‖2 ≤ ‖M‖2‖V ‖2,
‖L−1‖22 = ‖L−1L−T ‖2 = ‖V −1W−1‖2 ≤ ‖M−1‖2‖V −1‖2.

Consequently,

κ2(L) ≤
√

κ2(M )
√

κ2(V ). (2.22)

Based on Remark 1.1, we know that

V = X̄NX̄−1,

where

X̄ = diag(X ,X,X) and N = diag(Λ−2,Λ−1, I).
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Hence,

V −1 = X̄N−1X̄−1.

By using (2.10) and (2.11), we have

κ2(V ) = ‖X̄NX̄−1‖2‖X̄N−1X̄−1‖2
≤ ‖X‖22‖X−1‖22‖N‖2‖N−1‖2 = κ2(M)‖N‖2‖N−1‖2
≤ κ2(M )max{‖Λ−2‖2, ‖Λ−1‖2, 1} max{‖Λ2‖2, ‖Λ‖2, 1}
= κ2(M ) max

1≤l≤m
{v2l , vl, 1} max

1≤l≤m
{v−2

l , v−1
l , 1}. (2.23)

Through direct calculations, we get κ2(Q) = 2+
√
3. Finally from (2.21), (2.22) and (2.23), we

obtain (2.15). �

Now we consider the asymptotic convergence factor of the GMRES method on the ellipse

containing the eigenvalues of the preconditioned matrix P
−1

BCT
A. We have shown in Theorem

1.2 that the eigenvalues of the preconditioned matrix are enclosed in the rectangle

[1, 1 + p]× [0, 0],

where

p = max
1≤l≤m

2βvl,

see, for instance, [4]. To estimate the asymptotic convergence rate of the preconditioned GM-

RES method based on Corollary 1.1, we compute an ellipse E(a2, b2, c2, d2) of the smallest area

containing this rectangle. Because the center of the rectangle is (τ2, 0), where τ2 = 1 + 0.5 p,

and the lengths of the sides of the rectangle are χ2 = p and ω2 = 0, the ellipse E(a2, b2, c2, d2)
which has the estimated smallest area of all ellipses and encloses the rectangle is given by

a2 =

√
2

2
χ2, b2 =

√
2

2
ω2, c2 =

√
2

2

√

|ω2
2 − χ2

2|, d2 = τ2.

Hence,

ρk(E(P
−1

BCT
A)) =

χ2 + ω2√
2τ2 +

√

2τ2 − |χ2 − ω2|
=

p√
2(1 + 0.5p) +

√

2 + 2p− 0.5p2
. (2.24)

It follows from (2.24) that when

0 ≤ p ≤
√
2 +

√

2 + 16
√
2

4
≃ 1.5942,

the asymptotic convergence factor ρk(E(P
−1

BCT
A)) < 1. By substituting (2.15) and (2.24) into

(1.7), we have the k-th 2-norm residual of the preconditioned GMRES with preconditioner

PBCT as

RESPBCT ≤
(2 +

√
3)pkκ2(M )

√

max1≤l≤m{v2l , vl, 1} max1≤l≤m{v−2
l , v−1

l , 1}
(
√
2(1 + 0.5p) +

√

2 + 2p− 0.5p2)k
.
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3. Numerical Results

In this section, computations are performed for the example adopted from [3] to compare the

convergence behaviors obtained from the numerical outcomes and the theoretical results shown

in the previous sections. The experiments are run in MATLAB(version 7.8) with a machine

precision 10−16.

Example 3.1. [3] Let Ω = [0, 1]2 be a unit square and consider the distributed control problem

(1.1)-(1.3), with ∂Ω2 = ∅, g = u∗ and

u∗ =

{

(2x− 1)2(2y − 1)2, if (x, y) ∈ [0, 1
2 ]

2,

0, otherwise.

In [3], the system of linear equations (1.4) resulting from Example 3.1 is solved by using

preconditioned GMRES with preconditioners PBCD and PBCT , respectively. The computing

results show that when the proposed preconditioners are used in GMRES for solving (1.4), the

iteration steps and computing times are greatly reduced. In addition, the numbers of iteration

steps are almost independent of the mesh step-size h when the value of β is small.

For the sake of simplicity, we define the estimated upper bounds for κ2(XPBCD) in Theorem

2.1 and κ2(XPBCT ) in Theorem 2.2 as

∆1 = κ2(M )

√

max
1≤l≤m

{vl, 1} max
1≤l≤m

{v−1
l , 1},

∆2 = (2 +
√
3)κ2(M)

√

max
1≤l≤m

{v2l , vl, 1} max
1≤l≤m

{v−2
l , v−1

l , 1},

respectively. Note that the estimated uppers bounds ∆1 and ∆2 are dependent on the mesh

step-size h and independent of β. Tests for different step-size h = 2−3, 2−4, 2−5 are completed

in our experiments. We show the estimated bounds ∆1 of κ2(XPBCD) in the first row of Table

3.1, and the conditioner numbers κ2(XPBCD) are shown in the second row of this table. The

third row shows the ratio between ∆1 and κ2(XPBCD) given by

r1 =
∆1

κ2(XPBCD)
.

Table 3.1: ∆1 and κ2(XPBCD) for the preconditioned matrix P
−1

BCD
A.

h 2−3 2−4 2−5

∆1 1.0136 × 104 5.1065 × 104 2.1680 × 105

κ2(XPBCD) 3.5472 × 103 2.3125 × 104 1.8704 × 105

r1 2.8574 2.2082 1.1591

Table 3.2: ρ(E(P−1

BCD
A)) for the preconditioned GMRES.

h 2−3 2−4 2−5

β = 10−10 1.0217 × 10−1 2.7218 × 10−1 6.9573 × 10−1

β = 10−12 2.2011 × 10−2 5.8639 × 10−2 1.4989 × 10−1

Table 3.1 shows that the values of ∆1 become closer to κ2(XPBCD) when h decreases. If

h = 2−3 and h = 2−4, the ratio r1 is greater than 2. But for h = 2−5, r1 is just 1.1591, which is
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close to 1. So ∆1 is close to κ2(XPBCD). So the estimated value of κ2(XPBCD) in Theorem

2.1 is a good upper bound for κ2(XPBCD). The asymptotic convergence factors (2.13) for the

preconditioned GMRES method with PBCD for β = 10−10, 10−12 and h = 2−3, 2−4, 2−5 are

calculated and shown in Table 3.2. We find that the factors are small for very small values of

β, which demonstrates that the preconditioned GMRES method proposed in [3] is very efficient

for solving (1.4) especially when the value of β is very small.

Table 3.3: ∆2 and κ2(XPBCT ) for the preconditioned matrix P
−1

BCT
A.

h 2−3 2−4 2−5

∆2 5.1940 × 107 1.1378 × 109 1.9741 × 1010

κ2(XPBCT ) 4.8704 × 106 1.3806 × 108 3.8203 × 109

r2 10.6644 8.2413 5.1674

Table 3.4: ρ(E(P−1

BCT
A)) for the preconditioned GMRES.

h 2−3 2−4 2−5

β = 10−10 1.333 × 10−4 2.5115 × 10−3 3.9794 × 10−2

β = 10−12 1.333 × 10−6 2.5203 × 10−5 4.2071 × 10−4

For the preconditioned matrix P
−1

BCT
A, the estimated upper bounds of κ2(XPBCT ) are

calculated and shown in the first row of Table 3.3, the conditioner numbers κ2(XPBCT ) are

shown in the second row of this table. And the third row shows the ratio between ∆2 and

κ2(XPBCT ) given by

r2 =
∆2

κ2(XPBCT )
.

Table 3.3 also shows that the values of ∆2 become closer to κ2(XPBCT ) when h decreases.

However, the approximation between ∆2 and κ2(XPBCT ) in this table is not as good as the

approximation between ∆1 and κ2(XPBCD) in Table 3.1. For example, when h = 2−5, the

ratio r2 = 5.1674, which is greater than r1 = 1.1591. Hence, the estimation for κ2(XPBCT ) in

Theorem 2.2 still need to be improved. On the other hand, the values of ∆2 and κ2(XPBCT )

are about 104 times greater than the corresponding values of ∆1 and κ2(XPBCD), so, r2 shown

in Table 3.4 could also be considered as a suitable measure for judging the proximity between

large ∆2 and κ2(XPBCT ). The asymptotic convergence factors (2.24) for the preconditioned

GMRES method with PBCT for β = 10−10, 10−12 and h = 2−3, 2−4, 2−5 are calculated and

shown in Table 3.4. We also find that the factors are very small for small values of β, which

further demonstrates that the proposed preconditioned GMRES methods are very efficient for

solving (1.4) especially when β is very small.

4. Conclusion

We have considered convergence properties of the preconditioned GMRES methods using

block-counter-diagonal PBCD and block-counter-triangular PBCT preconditioners proposed

in [3] for solving the elliptic PDE-constrained optimization problems. Condition number of an

eigenvector matrix which can diagonalize the preconditioned matrix is estimated and an upper

bound is derived for P−1

BCD
A and P

−1

BCT
A, respectively. Experimental results have shown that

the theoretically estimated bounds can indicate the real condition numbers of the eigenvector
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matrices. In future work, we will focus on improving the upper bound of κ2(XPBCT ) to obtain

its more accurate estimates.
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