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Abstract

Various compact difference schemes (both old and new, explicit and implicit, one-level

and two-level), which approximate the diffusion equation and Schrödinger equation with

periodical boundary conditions are constructed by means of the general approach. The

results of numerical experiments for various initial data and right hand side are presented.

We evaluate the real order of their convergence, as well as their stability, effectiveness, and

various kinds of monotony. The optimal Courant number depends on the number of grid

knots and on the smoothness of solutions. The competition of various schemes should be

organized for the fixed number of arithmetic operations, which are necessary for numerical

integration of a given Cauchy problem. This approach to the construction of compact

schemes can be developed for numerical solution of various problems of mathematical

physics.
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1. Introduction

We consider compact difference schemes (or Numerov schemes, high-order compact (HOC)

schemes) for the evolution partial differential equations (PDEs):

— the classical diffusion equation:

∂tu = D∂2
xu+ f, (1.1)

where u = u(t, x) is the concentration, f = f(t, x) the source term, D > 0 the diffusion

coefficient, and

— the modified Schrödinger equation

∂tu = iD∂2
xu+ f, (1.2)

where D = ~/2m > 0, ~ is the Plank constant, m is the mass. We obtain the standard

Schrödinger equation from (1.2) if substitute: f = V (t, x)u.

We know the Cauchy initial data u(0, x) for the equations, and we want to obtain the

solution of the Cauchy problem, i.e., the function u(t, x), t ∈ [0, T ].
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The schemes can be modified for a wide class of PDEs and systems. We consider these two

equations as the examples only to avoid sophisticated formulae. We consider various compact

approximations of the Cauchy problem for the equations, as well as for the corresponding

homogeneous equations, when f ≡ 0. We demonstrate the variants of the compact schemes,

that much more effective than usual classical schemes. The relevant numerical experiments will

be presented below.

2. Test Functions and Compact Schemes

Let us approximate an abstract evolutionary difference equation

∂tu = Au+ f, (2.1)

where A is a differential linear operator with respect to spatial variables, by a family of difference

relations, that parameterized by the points 〈tn, xj〉 of a temporal-spatial difference grid.

The family of the relations (j = 1, . . . ,M, n = 0, . . . , N = T/τ)

∑

i∈S(0,u)

α0
ju(tn+1, xj+i) +

∑

i∈S(1,u)

α1
ju(tn, xj+i)

=
∑

i∈S(0,f)

β0
j f(tn+1, xj+i) +

∑

i∈S(1,f)

β1
j f(tn, xj+i), (2.2)

is called one-level scheme. It is called two-level scheme, if the functions 〈u, g〉 in the moment

t = (n+2)τ (where τ is a step with respect to independent variable t) are included into relation

(2.2):

∑

i∈S(0,u)

α0
ju(tn+2, xj+i) +

∑

i∈S(1,u)

α1
ju(tn+1, xj+i) +

∑

i∈S(2,u)

α1
ju(tn, xj+i)

=
∑

i∈S(0,f)

β0
j f(tn+2, xj+i) +

∑

i∈S(1,f)

β1
j f(tn+1, xj+i) +

∑

i∈S(2,f)

β2
j f(tn, xj+i). (2.3)

Here S(m, u), S(m, f) are stencils, αm
j , βm

j are coefficients of the scheme. Schemes (2.2) or

(2.3) are explicit, if the stencil S(0, u) includes the point x = jh only, where h is a spatial

step of the scheme. If scheme (2.2) is implicit, we will inverse a matrix Ω0, which is composed

from the coefficients α0
j and zeros on every temporal step. The matrix is K-diagonal, where K

is equal to the number of the points in the stencil S(0, u); K = 1 corresponds to the explicit

schemes.

The principal question: how should we choice the stencils and the coefficients to obtain a

minimal error at the given arithmetic operations number?

Let us consider for every point (tn, xj) the ideal I = I(G) in the ring of the smooth functions

of two variables t and x (see, e.g., [1]) which are generated by the functions uk,m(t, x) =

(t− tn)
m(x− xj)

k, where 〈k, m〉 ∈ G ⊂ Z+ ×Z+. Then the monomials uk,m together with the

functions

fk,m(t, x) = m(t− tn)
m−1(x− xj)

k −Dk(k − 1))(t− tn)
m(x− xj)

k−2,

give us the solutions of Eq. (1.1).
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If we assume that the pairs 〈uk,m, fk,m〉 are solutions of (2.2) or (2.3), we obtain the linear

homogeneous algebraic equations for the coefficients αm
j and βm

j . For instance, we obtain for

(2.2) the linear algebraic system

∑

i∈S(0,u)

α0
juk,m(tn+1, xj+i) +

∑

i∈S(1,u)

α1
juk,m(tn, xj+i)

=
∑

i∈S(0,f)

β0
j fk,m(tn+1, xj+i) +

∑

i∈S(1,f)

β1
j fk,m(tn, xj+i), (2.4)

where 〈k, m〉 ∈ G.

Thus, we use the pairs as test functions for the relevant compact difference scheme con-

struction. The corresponding scheme is parameterized by a pair of the stencils and by a set

G ⊂ Z+ × Z+. The corresponding examples will be considered below.

Note 2.1. The approach can be developed for the case of the equations with variable

coefficients.

Note 2.2. We must check the stability of the obtained scheme in every case. The Fourier

transform is useful for the analysis.

Note 2.3. To use implicit difference schemes (CN, CI3, CI3×2 etc) we need to inverse a

difference operator at every temporal step. The double-sweep in the one-dimensional case is a

most effective. As about implicit compact schemes in a multi-dimensional case, when we need

to inverse a block-three diagonal matrix, they are realized by the same tools, that are used for

the classic CN scheme: block double-sweep method [4] and iterative approaches (including the

multigrid Fedorenko methods and its modifications, see, e.g., [2,3]).

In some special cases (under strong conditions on the computational area, coefficients of the

differential equation and boundary conditions) we can use the fast discrete Fourier transform

with respect to part of independent variables.

Note 2.4. If we use scheme (2.3), then we need two initial functions, instead of one only

for original Eqs. (1.1) or (1.2). We should use the special projection approach for the second

initial function construction to conserve the order of approximation with respect to time. See

for details [5-7].

Note 2.5. Two-level difference scheme also can be used for approximation of differential

Eq. (2.1). The leap-frog scheme un+1 = 2τ [Ahu
n + fn] + un−1 is, probably, the most fa-

mous two-level scheme. To check the stability of a one-level difference scheme with constant

coefficients, e.g.,

c1u
n+1
j−1 + c2u

n+1
j + c3u

n+1
j+1 = c4u

n
j−1 + c5u

n
j + c6u

n
j+1,

we apply the Fourier transform to the formula and verify the inequality for the symbol of the

scheme:

max
ξ=1, ..., N

|σ(ξ)| ≤ 1 where σ(ξ) =
c4 exp(−iξh) + c5 + c6 exp(iξh)

c1 exp(−iξh) + c2 + c3 exp(iξh)
; (2.5)

sometimes we verify the inequality for all ξ ∈ R. If c1 = c3 and c4 = c6 we can rewrite it:

σ(ξ) =
2c4 cos(ξh) + c5
2c1 cos(ξh) + c2

.

If the coefficients {cj}
6
j=1 depend on a parameter, e.g., on the Courant number ν, we can

obtain from inequality (2.5) a restriction for the parameter.
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In the case of a two-level scheme

c1u
n+2
j−1 + c2u

n+2
j + c3u

n+2
j+1 = c4u

n+1
j−1 + c5u

n+1
j + c6u

n+1
j+1 + c7u

n
j−1c8u

n
j + c9u

n
j+1,

we consider the eigenvalues λ1,2(ξ) of the matrix







c4 exp(−iξh)+c5+c6 exp(iξh)
c1 exp(−iξh)+c2+c3 exp(iξh)

c7 exp(−iξh)+c8+c9 exp(iξh)
c1 exp(−iξh)+c2+c3 exp(iξh)

1 0






, (2.6)

and verify the inequality:

max
ξ∈R

|maxλ1,2(ξ)| ≤ 1, (2.7)

or apply the Routh–Hurwitz criterion (after the Joukowsky transform).

The matrix (2.6) has two eigenvectors. One of them describes the diffusion phenomenon,

as well as the second eigenvector is an undesirable result of these two layers; see Note 2.4.

We should determine additional initial data (two functions instead of one for PDE (2.1)) to

minimize the amplitude of the parasitic wave.

Note 2.6. If we solve Eqs (1.1) or (1.2) in a bounded domain, we need a boundary condi-

tion. If we use three-point stencil and the Dirichlet boundary condition, we use the boundary

conditions together with relations (2.2) or (2.3) for all inner points of the difference grid. If we

have some other boundary condition, e.g. the Neumann condition, then we exchange the ideal

I for the boundary points of the grid to obtain high order approximation, i.e. suitable linear

algebraic relations on smaller stencils at the points about boundary instead of (2.2) or (2.3).

Then we conserve the corresponding order of approximation for the mixed boundary problem.

Note 2.7. If we use a large stencil S(0, u), we must introduce additional boundary condi-

tions with respect to differential mixed problem for (1.1) or (1.2). We should use the special

additional numerical boundary conditions to conserve the order of approximation of the scheme

with respect to spatial variable.

Note 2.8. If we exchange the basis {uk,m}〈k,m〉∈G in the ideal I on some other one {ũq}q∈G̃

and define f̃q = (∂tA) ũq, then we obtain another system like (2.3) as well as a compact scheme.

However, at τ → 0, h → 0 the schemes will be equivalent. The choice of the basis may be

useful, if the differential operator A with variable coefficients has a singularity at some point

x∗. The same problem was solved in [7] by the way, where shallow-water system in spherical

coordinate system was approximated by a compact scheme.

Note 2.9. The approach to compact schemes construction with help of test functions

sometimes may be exchanged on the Pade approximation approach, see, e.g., [5,6].

3. Numerical Experiments

We verify our schemes on the following solutions at ∈ [0, 2π] with periodical boundary

conditions.

3.1. Homogeneous case.

i) u(0, x) = cos(x), f ≡ 0. Then the analytical solution of diffusion Eq. (1.1) is

u(t, x) = exp(−Dt) cos(x),
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and of Schrödinger Eq. (1.2) it is

u(t, x) = exp(−iDt) cos(x),

i.e., u = u∗ + iu∗∗; where

u∗(t, x) = cos(iDt) cos(x), u∗∗(t, x) = − sin(iDt) cos(x).

ii) uk(0, x) = sink(x) exp(x), k = 0, . . . , 4 for the diffusion equation and k = 2, 3, 4 for

the Schrödinger equation; fk ≡ 0. The functions u0, u
′
1, u

′′
2 , u

′′′
3 , u

[iv]
4 are discontinuous at

x = 0 ∼ 2π. We do not know the analytical solutions in the cases. Instead of them we use the

numerical solutions, which were obtained with a very small step.

3.2. Non-homogeneous case.

The errors of the compact schemes depend on the smoothness of solutions u and right hand

sides (forcing) f .

iii) ũ(t, x) = cos(x) sin(t), f̃(t, x) = cos(x)[cos(t) +D sin(t)] for the diffusion equation and

ũ(t, x) = cos(x) sin(t), f̃(t, x) = cos(x)[cos(t) + iD sin(t)],

for the Schrödinger one.

iv) u∗
k(t, x) = sin(t) sink(x) exp(x), f∗

k (t, x) =
[

∂t −D∂2
x

]

u∗
k(t, x), k = 2, 3, 4 for the

diffusion equation and f∗
k (t, x) =

[

∂t − iD∂2
x

]

u∗
k(t, x) for the Schrödinger one. We do not use

the functions at k = 0, 1, because in the cases for all t the right hand sizes f∗
k (t, x) are singular

at x = 0, and the schemes cannot approximate the distributions (generalized functions) on a

discrete grid. The jumps amplitude of the second derivative J = u2(2π) − u2(0) is equal to

1069, and therefore the amplitude of the jump of the forcing f2 is equal to 1069D.

Usually a fixed non-dimensional Courant number ν = τDh−2 is used for the various differ-

ence schemes comparison. However, the optimum is conditional. The optimal Courant number

depends not only on the concrete scheme, but on the solution smoothness as well as on the

number of knots of the relative temporal-spatial grid; see Sect. 9.

4. Explicit Compact One-Level Scheme and Euler Explicit Scheme

Let us consider the compact explicit scheme which corresponding to Fig. 4.1.

Fig. 4.1. The stencils and the set of the test functions (Newton diagram) for explicit one-level scheme

(4.1). The stencil of the classical Euler scheme with operator Ah,5 for u is the same, and with operator

Ah,3 the stencil is shorter, i.e. a1 = 0.
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Then we obtain the following solution of the corresponding algebraic system (2.4):

a1 =
ν(6ν − 1)

12
, b1 = −

2ν(3ν − 2)

3
,

c1 = 3ν2 − 5ν/2 + 1, p0 = p1 = τ
ν(6ν − 1)

48
,

q0 = q1 = −τ
ν(3ν − 2)

6
, r0 = r1 = τ

4− 5ν + 6ν2

8
,

where ν = τDh−2 or ν = iτDh−2 — the dimensionless Courant parameter (number). If the

Courant parameter is fixed, then τ = O
(

h2
)

as h → 0. We obtain the compact explicit scheme:

a1(u−2h,0 + u2h,0) + b1(u−h,0 + uh,0) + c1u0,0 + u0,τ

=p1(f−2h,0 + f2h,0) + q1(f−h,0 + fh,0) + r1f0,0 + p0(f−2h,τ + f2h,τ ) + q0(f−h,τ + fh,τ ) + r0f0,τ .

(4.1)

The scheme is stable for diffusion Eq (1.1), if ν ≤ 2/3.

The old classic explicit Euler scheme for an arbitrary Eq (2.1) is

un+1 = un + τ [Ahu
n + fn] , (4.2)

where Ah is a difference approximation of the operator A with respect to the variable x, only.

We consider two versions of Ah (with three- and five-points stencils) for comparison with our

compact approximation:

Ah,3u = h−2 [uj−1 − 2uj + uj+1] ,

Ah,5u = h−2

[

−1

12
uj−2 +

4

3
uj−1 −

5

2
uj +

4

3
uj+1 −

1

12
uj+2

]

.

The Euler scheme E3 (with Ah,3) is stable, if ν ≤ 1/2, and E5 (with Ah,5), if ν ≤ 3/8.

Let us consider the results of computations by the difference schemes for the following data

i) (see Sect. 3); x ∈ [0, 2π]; periodical boundary conditions; D = 1, T = 10, h = heul = 2π/N .

Fig. 4.2. The norms of errors of explicit Euler and compact difference schemes in a bilogarithmic

scale. a) 3-point Euler scheme E3 and 5-point explicit compact (C5E) scheme with hcomp = 3
√

5/3heul;

ν = 0.48; b) 5-point Euler scheme E5 and C5E; ν = 0.35 Here the curves: 1 — C-norm error of the

corresponding Euler scheme, 2 — C-norm error of the compact scheme, 3 — L2-norm error of the Euler

scheme, 4 — L2-norm error of the compact scheme.
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We compare the compact scheme with 3-point Euler scheme (Fig. 4.2 a) and 5-point one

(Fig. 4.2b) for integration of the Cauchy problem for the homogeneous diffusion equation. The

3-point Euler scheme applies 3 multiplications for every knot of the grid against 5 multiplications

in the compact scheme. That is why we used in the experiment the compact schemes spatial step

hcomp = 3

√

5/3heul, then the computational time is the same for both schemes. We demonstrate

on the Fig. 4.2 the errors evaluation in the norms C and L2.

The behavior of the errors in C and L2-norm for various ν is very similar. Also we can see

from here that the error of the compact scheme C5E is much less, and it has 4-th approximation

order with respect to h against 2-nd order for both Euler schemes E3 and E5.

Note 4.1. The error of approximation of Eq. (2.1) by the formula (4.2) for any spatial

approximation Ah (with high order of approximation with respect to x, e.g. 4-th, 6-th, or

8-th) is not better than O(τ). If we use a connection between steps τ = C4h
4, τ = C6h

6, or

τ = C8h
8, we obtain the high order of approximation. However, such relations lead to very

small step τ , and are not effective. If we use the standard relation ν = Dτh−2 = const, then

the total error is estimated as O
(

h2
)

as h → +0. Such kind of the schemes comparison with a

constant ν is traditional. However, we should find an optimal value ν for every scheme. That

is why we firstly fix Q — the number of arithmetic operations (multiplications and divisions

only) and minimize the norm of error by the number of steps with respect to space (N) and to

time (M). We must take into account that various schemes use the various numbers Q∗ of the

operations for every knot of a spatial-temporal grid. We obtain here

Q = MNQ∗. (4.3)

Certainly the numbers Q∗ are different for homogeneous and non-homogeneous equations.

Below (in Sect.9) we will compare various schemes for the given number Q.

5. Two-Level Explicit Schemes

We can enlarge the stencil of the explicit scheme (4.1) by including an additional temporal

level in the scheme stencil, see Fig. 5.1. Then we obtain 6 additional parameters in the compact

scheme to improve both order of approximation and stability limit of the scheme.

a2(u−2h,0 + u2h,0) + b2(u−h,0 + uh,0) + c2u0,0 + a1(u−2h,τ + u2h,τ )

+ b1(u−h,τ + uh,τ ) + +c1u0,τ + u0,2τ

= p2(f−2h,0 + f2h,0) + q2(f−h,0 + fh,0) + r2f0,0 + p1(f−2h,τ + f2h,τ) + +q1(f−h,τ + fh,τ )

+ r1f0,τ + p0(f−2h,2τ + f2h,2τ) + q0(f−h,2τ + fh,2τ ) + r0f0,2τ (5.1)

We compare solutions, which are obtained by two-level compact schemes 1–4, with the

similar solutions of one-level compact scheme (4.1) in series of numerical experiments on the

test solutions ii), iv) from Sect. 3, at ν1,max = 2/3 (the stability limit of one-level explicit

scheme (4.1)). In homogeneous case, scheme (4.1) uses Q∗ = 5 multiplications for every value

un+1
j against Q∗ = 10 in the two-level schemes 1–4. We obtain Q∗ = 15 and Q∗ = 25,

correspondingly, for the non-homogeneous equation; see Table 9.1.

The method of gradient descent was used for optimization of free parameters. Also we can

choose the number of knots N in relation (4.3) for given numbers Q, Q∗.

The results are not clear yet. These two-level explicit schemes are more effective than one-

lever one (4.1). However, the optimal coefficients strongly depend on the available number
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Fig. 5.1. The stencils and the set of the test functions for explicit two-level scheme (5.1). Every Newton

diagram generates a compact scheme with free parameters: 2 parameters for the scheme 1, scheme 2,

scheme 3 and 5 parameters for scheme 4.

of arithmetic operations, Q, see Table 5.1. The application of such schemes to difference

approximations of differential variable coefficients is not clear too.

The coefficients of the scheme (5.1), variant 4 may be optimized in various assumptions and

senses with respect to free parameters. We present in the left columns ot Table 5.1 the number

of arithmetic operations Q, the minimized norm of the error, and the used test solution. Also

we present reaction of the relevant scheme on both test solutions in both norms.

Table 5.1: Q and the minimized norm of the error.

Q norm k err; C; 2 err; L2; 2 err; C; 4 err; L2; 4

21000 C 2 46.62 32.98 74.05 53.63

21000 L2 2 25.31 10.98 37.17 30.82

21000 C 4 62.07 48.38 0.52 0.44

21000 L2 4 62.34 49.44 0.93 0.35

42000 C 2 21.68 15.2 35.46 24.88

42000 L2 2 19.14 7.02 31.41 25.27

42000 C 4 46.27 35.85 0.19 0.15

42000 L2 4 43.99 33.9 0.22 0.12

84000 C 2 10.27 6.38 22.22 20.06

84000 L2 2 13.66 4.6 20.17 17.87

84000 C 4 35.3 27.12 0.07 0.05

84000 L2 4 35.37 27.12 0.08 0.05

168000 C 2 7.57 4.91 17.24 13.39

168000 L2 2 12.21 4.26 17.81 14.44

168000 C 4 27.72 21.34 0.03 0.02

168000 L2 4 27.93 21.35 0.06 0.02

The optimized schemes give us very small integration errors, if we can formulate exactly our

goal: an available number of operations, order of smoothness of right hand side and solution,

type of norm, where we would like to minimize the error. We use the bold font for the cases.
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In other examples the error is larger.

We must mention that the coefficients realize in the space of free parameters R5 local minima

only. In the case of differential equations with variable coefficients this optimization will be very

expensive.

6. Implicit Compact One-Level Scheme and Crank–Nicolson Scheme

Let us consider a compact implicit scheme with the stencil like the classical Crank–Nicolson

(CN, trapezoidal) scheme, see Fig. 6.1.

We obtain for the compact scheme

a0(u−h,τ + uh,τ ) + b0u0,τ + a1(u−h,0 + uh,0) + b1u0,0

= p0(f−h,τ + fh,τ ) + q0f0,τ + p1(f−h,0 + fh,0) + q1f0,0, (6.1)

from the approximation conditions the following coefficients:

a0 = 2(6ν − 1); a1 = 2(6ν + 1); b0 = −4(6ν + 5);

b1 = −4(6ν − 5); p0 = p1 = −τ ; q0 = q1 = −10τ.

The CN (or trapezoidal) scheme for Eq. (2.1) can be obtained by approximation of differ-

ential Eq. (2.1) in the time moment t = n+ 1/2:

un+1 − un

τ
=

1

2

(

Ah

(

un+1 + un
)

+ fn+1 + fn
)

.

In particular, for differential Eqs. (1.1) and (1.2) CN scheme may be described by the

difference equation

un+1
j − un

j

τ
=

1

2

(

Dh−2
[

un+1
j−1 + un

j−1 − 2
(

un+1
j + un

j

)

+ un+1
j+1 + un

j+1

]

+ fn+1
j + fn

j

)

, (6.2)

and

un+1
j − un

j

τ
=

1

2

(

iDh−2
[

un+1
j−1 + un

j−1 − 2
(

un+1
j + un

j

)

+ un+1
j+1 + un

j+1

]

+ fn+1
j + fn

j

)

, (6.3)

for standard approximation of the second derivative Ah, correspondingly. However, this opera-

tor (not full Eq. (1.1)) may be approximated by the compact scheme d2

dx2 ∼
δ2
x

1+δ2
x
/12 , (see, e.g.,

[7,8,11]).

Fig. 6.1. The stencils and the set of the test functions for compact implicit one-level scheme C3I (6.1).

The stencil for the Crank–Nicolson scheme for u is the same.
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Table 6.1: Errors for CN and the compact sheme C3I.

Scheme Diffusion equation Schrödinger equation

C L2 C L2

CN 7.69-6 5.44-6 1.10-3 8.09-4

C3I 2.01-8 1.42-8 3.29-6 2.32-6

We search the compact implicit scheme (C3I) for the stencils and the test functions that

submitted on Fig. 6.1 in the form

a0(u−h,τ + uh,τ ) + b0u0,τ + a1(u−h,0 + uh,0) + b1u0,0

= p0(f−h,τ + fh,τ ) + q0f0,τ + p1(f−h,0 + fh,0) + q1f0,0.

We obtain the following coefficients — solution of the system (2.3):

a0 = 2(6ν − 1); a1 = 2(6ν + 1); b0 = −4(6ν + 5);

b1 = −4(6ν − 5); p0 = p1 = −τ ; q0 = q1 = −10τ.

Table 6.1. presents the errors of the classic scheme CN and the compact scheme C3I, when

they approximate the diffusion equation and the Schrödinger one. See also Fig. 6.2.

At first we compare the schemes on the smooth test solution i). We can see from the Table

6.1 a significant preference C3I against the classical scheme CN (in 380 times for a) and in 350

times for b) ).

Then we consider the Cauchy problem for Eqs. (1.1) and (1.2) with periodic initial function

like iii).

Scheme (6.1) is absolutely stable for both Eqs. (1.1), (1.2) and non-dissipative for Eq. (1.2).

We can conclude from Fig. 6.3 and Fig. 6.4 that

• 1) the order of approximation for CN scheme is equal to 2, and for the compact scheme

it is equal to 4;

• 2) the error of the compact scheme is much smaller for suitable values of the step h.

However, the statement is true for smooth solutions (e.g. for example the solution iv) at

k = 4) only. We will consider non-smooth tests below.

Fig. 6.2. The errors for the homogeneous diffusion equation (a) and for the Schrödinger equation (b)

of the schemes CN (curve 1) and C3I (curve 2) multiplied by 104 on the a) and by 103 on the b). The

analytical solution (curve 3) of the Cauchy problem for the test solution i) Sect.3 for a) and real part

of the solution for homogeneous Eq. (1.2) for b). Here N = 120.
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Fig. 6.3. The norms of the errors of the implicit schemes CN and C3I for diffusion Eq. (1.1); ν = 1, T = 5

in the bilogarithmic scale. a) test solution i) in Sect. 3; b) test solution iii) in Sect.3. The curves

notations are like Fig. 4.2.

Fig. 6.4. The norms of the errors of implicit CN and compact difference schemes for Schrödinger

Eq. (1.2); ν = i, : T = 5 in a bilogarithmic scale. a) test solution i) b) test solution iii). The curves

notations are like Fig. 4.2.

7. Implicit Compact Two-Level Scheme

Let us consider the two-level compact scheme with stencils and Newton diagram described

on Fig. 7.1. We obtain for the following family of compact schemes

2
∑

j=0

aj

(

u(−h, jτ) + u(h, jτ)
)

+ bju(0, jτ) =

2
∑

j=0

pj

(

f(−h, jτ) + f(h, jτ)
)

+ qjf(0, jτ). (7.1)

Scheme (7.1) is exact for all test functions on Fig. 7.1 at the following coefficients, which

depend on two arbitrary real parameters (y, z ∈ R):

a0 =
1

10
−

36νz

25τ
; a1 =

5y + 10z − 30νy + 24νz

25τ
−

2

5
;

a2 =
12ν

5
−

10y + 20z + 60νy + 216νz + 288ν2z

50τ
+

3

10
; b0 = 1;

b1 =
10y + 20z + 12νy + 48νz

5τ
− 4; b2 = 3−

−288ν2z − 60yν + 50y + 100z

25τ
−

24ν

5
;
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Fig. 7.1. The stencils and the set of the test functions (Newton diagram) for implicit two-level scheme

(7.1).

p0 =
z

10
; p1 =

y

10
; p2 =

y

10
−

τ

5
+

3z

10
+

12νz

25
;

q0 = z; q1 = y; q2 = y − 2τ + 3z +
24νz

5
. (7.2)

One-level compact scheme (6.1) can be obtained as a particular case of scheme (7.1), (7.2)

at y = z = 5τ/10 + 12ν or at y = 0; z = 5τ/5 + 12ν.

However, the stability condition (2.7) for compact schemes (7.1), (7.2) is fulfilled not only

for these cases, but for the values y = 0; z = 5τ/2(6ν + 5), too. These three compact schemes

are absolutely stable both for the diffusion equation and for the Schrödinger equation. They

are absolutely stable and non-dissipative for the Schrödinger equation.

Note 7.1. For the last scheme the absolute value of the parasitic eigenvalue is equal to 1

for all wave numbers .

8. Implicit Compact One-Level Scheme with Large Stencils

Let us consider the family of one-level compact schemes with the same stencils and Newton

diagram described on Fig. 8.1. We obtain coefficients for the family of compact schemes

a0(u−2h,0 + u2h,0) + b0(u−h,0 + uh,0) + c0u0,0 + a1(u−2h,τ + u2h,τ ) + b1(u−h,τ + uh,τ ) + c1u0,τ

= p0(f−2h,0 + f2h,0) + q0(f−h,0 + fh,0) + r0f0,0 + p1(f−2h,τ + f2h,τ ) + q1(f−h,τ + fh,τ ) + r1f0,τ ,

(8.1)

but formulae for them are too large to write here.

Fig. 8.1. The stencils and the set of the test functions (Newton diagram) for the family of one-level

compact schemes (8.1) is a free integer parameter.

Since the coefficients of scheme (8.1) are very close to each other (see Fig. 8.2), let us consider

the special case of the family (8.1) only the scheme with stencils and Newton diagram which

described on Fig. 8.2.
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Table 8.1: Numerical errors on solution ii) (k = 1) in Section 3, with T = 1 and ν = 0.65 in (1.1).

Number N Approximation order

Scheme Norm 10 20 40 80 20-10 40-20 80-40 RMS

CI3×2 C 8.29 1.61 0.33 0.0846 2.37 2.28 1.96 2.21

CI3×2 L2 5.26 0.971 0.205 0.052 2.44 2.24 1.98 2.23

C3I C 8.29 1.61 0.329 0.0845 2.37 2.28 1.96 2.21

C3I L2 5.27 0.971 0.205 0.052 2.44 2.24 1.98 2.23

C5I C 8.48 1.61 0.33 0.0845 2.40 2.28 1.96 2.22

C5I L2 5.29 0.97 0.206 0.052 2.44 2.24 1.98 2.23

C5E C 16.1 2.29 0.334 0.0847 2.82 2.78 1.98 2.55

C5E L2 9.22 1.15 0.205 0.0521 3.00 2.48 1.98 2.52

CN C 9.10 1.78 0.373 0.0956 2.35 2.26 1.96 2.20

CN L2 5.83 1.08 0.223 0.0573 2.42 2.28 1.96 2.23

Table 8.1. presents the results of numerical experiment on solution ii) (k = 1) from Sect. 3,

with T = 1 for various schemes for diffusion Eq. (1.1) with ν = 0.65. Test solution was

calculated by scheme (6.1) with 640 knots. The bold font is used here for the best results.

For instance, for the value s = 4 we obtain the following coefficients:

a0 = −
13402

477(265ν + 262)
−

31

318
, a1 =

10964

477(265ν + 262)
−

31

318
,

b0 =
86768

477(265ν + 262)
−

64

159
, b1 =

13840

477(265ν + 262)
−

64

159
,

c0 = 1, c1 = 1−
524

265ν + 262
, p0 = p1 =

23τ

18(265ν + 262)
,

q0 = q1 =
344τ

9(265ν + 262)
, r0 = r1 =

131τ

265ν + 262
. (8.2)

Schemes (8.1) for s = 4, . . . , 50 are absolutely stable for Eq. (1.1); they are stable and

non-dissipative for Eq. (1.2).

We cannot choose a scheme, which will be unique champion in these tests. The results

Fig. 8.2. Value of some coefficients of one-level compact scheme (8.1) for s = 4, . . . , 20, ν = 1, τ = 0.01.
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Fig. 8.3. The L2-norm (curve 1), C-norm (curve 2) of the errors of schemes (8.1)-(8.2) and (6.1) for

diffusion Eq. (1.1); ν = 1, T = 5, D = 1 in a logarithmic scale. a) test solution i); b) test solution iii).

The plots of the errors of the schemes (8.1)-(8.2) and (6.1) are equal with a high accuracy.

Fig. 8.4. The L2-norm (curve 1), C-norm (curve 2) of the errors for difference approximations of

Schrödinger Eq. 1.2; ν = i, T = 5, D = i in a logarithmic scale. Really the errors of scheme (8.1)-(8.2)

are equal with a high accuracy to norms of errors of C3I. a) test solution i); b) test solution iii).

depend strongly on the test solutions.

Table 8.2. presents the results of numerical experiment on test solution ii) (k = 2) from

Sect. 3, with s = 4, . . . , 50 for various schemes for diffusion Eq. (1.1) with ν = 0.65. Test

Table 8.2: Same as Table 8.1, except with k = 2.

Number N Approximation order

Scheme Norm 10 20 40 80 20-10 40-20 80-40 RMS

CI3×2 C 5.65+0 8.45-1 1.25-1 3.52-2 2.74 2.76 1.82 2.48

CI3×2 L2 3.63+0 5.39-1 7.88-2 2.21-2 2.75 2.77 1.83 2.49

C3I C 5.65+0 8.46-1 1.24-1 3.52-2 2.74 2.76 1.82 2.48

C3I L2 3.63+0 5.40-1 7.88-2 2.21-2 2.75 2.78 1.83 2.49

C5I C 5.64+0 8.43-1 1.24-1 3.52-2 2.74 2.76 1.82 2.48

C5I L2 3.62+0 5.39-1 7.87-2 2.21-2 2.75 2.77 1.83 2.49

C5E C 7.34+0 8.75-1 1.27-1 3.53-2 3.07 2.79 1.84 2.62

C5E L2 4.48+0 5.52-1 7.94-2 2.22-2 3.02 2.80 1.84 2.60

CN C 6.99+0 1.11+0 1.88-1 5.10-2 2.65 2.56 1.88 2.39

CN L2 4.16+0 6.65-1 1.10-1 2.99-2 2.65 2.59 1.88 2.40
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Table 8.3: Same as Table 8.1, except with k = 3.

Number N Approximation order

Scheme Norm 25 50 100 200 50-25 100-50 20-100 RMS

CI3×2 C 5.15+0 7.82-1 1.14-1 3.22-2 2.72 2.78 1.83 2.48

CI3×2 L2 3.33+0 4.95-1 7.24-2 2.03-2 2.75 2.77 1.83 2.49

C3I C 5.15+0 7.82-1 1.14-1 3.22-2 2.72 2.78 1.82 2.48

C3I L2 3.33+0 4.94-1 7.23-2 2.03-2 2.75 2.77 1.83 2.49

C5I C 4.94+0 7.79-1 1.14-1 3.22-2 2.66 2.77 1.82 2.46

C5I L2 3.32+0 4.94-1 7.23-2 2.03-2 2.75 2.77 1.83 2.49

C5E C 1.03+1 8.56-1 1.16-1 3.23-2 3.59 2.88 1.84 2.86

C5E L2 4.03+0 5.06-1 7.29-2 2.04-2 2.99 2.79 1.84 2.59

CN C 6.50+0 1.02+0 1.71-1 4.64-2 2.67 2.57 1.88 2.40

CN L2 3.80+0 6.09-1 1.01-1 2.74-2 2.64 2.59 1.88 2.40

Table 8.4: Numerical errors on solution ii) (k = 2) in section 3, with T = 10, and ν = i in (1.2).

Number N Approximation order

Scheme Norm 25 50 100 200 50-25 100-50 20-100 RMS

CI3×2 C 4.23+1 2.20+1 4.74+0 1.31+0 0.94 2.21 1.85 1.75

CI3×2 L2 2.92+1 1.09+1 3.04+0 9.67-1 1.41 1.84 1.65 1.66

C3I C 3.02+1 9.07+0 3.13+0 7.14-1 1.73 1.53 3.12 1.82

C3I L2 2.23+1 6.67+0 1.76+0 5.27-1 1.74 1.92 1.74 1.80

C5I C 3.01+1 8.96+0 2.87+0 8.94-1 1.75 1.64 1.68 1.69

C5I L2 2.17+1 6.73+0 1.72+0 5.15-1 1.69 1.97 1.74 1.80

CN C 3.90+1 3.21+1 9.42+0 4.84+0 0.28 1.77 0.60 1.17

CN L2 2.92+1 1.59+1 6.68+0 2.66+0 0.87 1.25 1.33 1.17

solution is calculated by scheme (6.1) with 640 knots.

Table 8.3. presents the results of numerical experiment on test solution ii) (k = 3) from

Sect. 3, with T = 1 for various schemes for diffusion Eq. (1.1) with ν = 0.65. Test solution is

calculated by scheme (6.1) on 640 knots.

Table 8.4. presents the results of numerical experiment on test solution ii) (k = 2) from

Sect. 3, with T = 10 for various schemes for Schrödinger Eq. (1.2) with ν = i. Test solution is

calculated by scheme (6.1) on 320 knots.

Table 8.5. presents results of numerical experiment on the test solution ii) (k = 3) from

Sect. 3, with T = 10 for various schemes for Schrödinger Eq. (1.2) with ν = i. Test solution is

calculated by scheme (6.1) on 320 knots.

Table 8.5: Same as Table 8.4, with k = 3.

Number N Approximation order

Scheme Norm 25 50 100 200 50-25 100-50 20-100 RMS

CI3×2 C 5.16+1 2.32+1 3.26+0 5.08-1 1.15 2.83 2.68 2.35

CI3×2 L2 2.92+1 1.20+1 2.13+0 3.66-1 1.28 2.49 2.54 2.18

C3I C 3.11+1 8.97+0 1.73+0 2.01-1 1.80 2.37 3.10 2.48

C3I L2 2.59+1 5.95+0 9.03-1 1.53-1 2.12 2.72 2.56 2.48

C5I C 3.38+1 8.73+0 1.60+0 2.26-1 1.95 2.44 2.83 2.44

C5I L2
2.54+1 5.86+0 8.72-1 1.48-1 2.11 2.75 2.55 2.49

CN C 3.52+1 3.52+1 7.99+0 2.90+0 0 2.13 1.46 1.49

CN L2
2.54+1 1.78+1 6.22+0 1.88+0 0.51 1.52 1.73 1.36
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Table 8.6: Same as Table 8.4, with k = 4.

Number N Approximation order

Scheme Norm 25 50 100 200 50-25 100-50 20-100 RMS

CI3×2 C 4.23+1 2.66+1 3.71+0 3.89-1 0.66 2.84 3.25 2.52

CI3×2 L2 2.96+1 1.48+1 2.45+0 2.45-1 1.00 2.59 3.32 2.50

C3I C 3.67+1 1.16+1 1.72+0 1.26-1 1.66 2.75 3.77 2.86

C3I L2 2.57+1 7.58+0 8.13-1 7.68-2 1.76 3.22 3.40 2.89

C5I C 3.38+1 1.16+1 1.62+0 1.13-1 1.55 2.84 3.84 2.90

C5I L2 2.51+1 7.40+0 7.80-1 7.36-2 1.76 3.25 3.40 2.90

CN C 3.97+1 3.65+1 9.88+0 3.44+0 0.12 1.88 1.52 1.40

CN L2 2.75+1 1.94+1 7.60+0 2.10+0 0.50 1.35 1.85 1.36

Table 8.6. presents results of numerical experiment on the test solution ii) (k = 4) from

Sect. 3, with T = 10 for various schemes for Schrödinger Eq. (1.2) with ν = i. Test solution is

calculated by scheme (6.1) on 320 knots.

As can be seen from Tables 8.1 – 8.3, schemes CI3×2, C3I, C5I, C5E demonstrate same

results on solutions from C1, C2, and C3 of Eq. (1.1), but the order of approximation for C5E

is slighty higher.

As for solutions from from C1, C2, and C3 of Eq. (1.2), numerical experiments (see Tables

8.4 – 8.6) shows that the error is less for scheme C5I, althought scheme C3I demonstrates

resembling performance.

9. Effectiveness of Difference Schemes

We conclude that the effectiveness of the explicit compact scheme for integration of Cauchy

problem for diffusion Eq. (1.1) is much more than the effectiveness of both versions of Euler

scheme for the smooth solution as well as the smooth solutions iii) at k = 4, see Fig. 9.1. In

opposite for solutions with discontinuity at k = 2 the Euler 3-point scheme is more effective.

As about Schrödinger Eq. (1.2), the Euler schemes E3 and E5, as well as the compact

explicit scheme C5E are absolutely unstable for it.

The implicit schemes are more effective than explicit ones. They are stable for both types

of the equations.

Note.9.1. We take into account in the Table 9.1 multiplications and divisions only.

Note.9.2. As about implicit schemes in the Table 9.1, we include the number of operations

in the double-sweep method. We do here 6N such operations for every temporal step. However,

we can do 3N operations of the direct sweep one time and then use the coefficients on every

temporal step. Thus, we include in the corresponding column 3 operations only for the schemes

C3I and CN.

If we will solve the equation with coefficient D, which depending on time t, D = D(t), then

we must take into account all 6N operations. We assume here, that D = const.

Table 9.1: The number of arithmetic operations Q∗ for one knot of a temporal-spatial grid for various

explicit and implicit difference schemes.

Scheme E3 E5 C5E C5× 2E C3I C5I CN C3× 2I

Homogeneous 3 5 5 10 6 15 6 12

Non-homogeneous 4 6 15 25 12 21 6 18
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Fig. 9.1. The Cauchy problem integration of the non-homogeneous diffusion equation when the test

solution is iv). a) L2-norm, k = 2; b) L2-norm, k = 4. The optimal values of a Courant number ν for

various schemes. Bilogarithmic scales.

We twice the numbers for the scheme C5I that uses 5-point double sweep method. Let us

consider a difference scheme for Eq. (2.1) and let ũ(t) be its solution of the Cauchy problem

for some given initial data and right hand side. Let us define E(t) = ‖u(t)− ũ(t)‖ as a norm

of the error. If the estimation

E(T ) = O
(

S−d
)

as S → ∞ is fulfilled, we define the power d as the order of effectiveness of the scheme.

Certainly, the order depends on the choice of analytical solution u(t) and on the period if

integration T . However, it is may be more adequate quantitative characteristic than the orders

of approximation and the order of convergence, because the optimal Courant number depends

on S. We find the optimal values of all parameters (N and all free parameters of the relative

Table 9.2: The order of effectiveness for various difference schemes, norms and smoothness of test

solutions. Approximation of the diffusion equation. The bold font is used here for the best results.

k 2 2 4 4

Norm C L2 C L2

E3 0.34 0.35 0.63 0.68

E5 0.36 0.36 0.93 0.82

C5E 0.40 0.40 1.36 1.37

C5× 2 E 1.75 0.97 1.35 1.34

C3I 0.67 0.67 1.35 1.33

C5I 0.66 0.67 1.35 1.34

C3× 3 I 0.75 0.67 1.36 1.40

CN 0.66 0.66 1.01 1.00

Table 9.3: The order of effectiveness for various difference schemes, norms and smoothness of test

solutions. Approximation of the Schrödinger equation. The bold font is used here for the best results.

k 2 2 4 4

Norm C L2 C L2

C3I 0.59 0.69 1.32 1.39

C5I 0.68 0.67 1.35 1.39

C3× 3I 0.69 0.65 0.81 0.81

CN 0.57 0.70 0.99 0.98
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Fig. 9.2. The same results for the Schrödinger equation. Only implicit schemes were considered, because

the explicit schemes are unstable.

Fig. 9.3. The Cauchy problem integration of the homogeneous diffusion equation when the analytical

solution is ii). a) L2-norm, k=0 b) L2-norm, k = 2. The optimal values of a Courant number ν for

various schemes. Bilogarithmic scales.

scheme) for several values Q and then evaluate the order d by least squares method.

Note 9.3. All the schemes are economical according to Samarskii, [10], i.e. the number

of arithmetical operations is proportional to the number of knots of the spatial-temporal grid.

Also we can estimate the approximation order for these schemes. However, it is not enough for

the evaluation of the order of effectiveness, because we optimize the parameters of the scheme

Fig. 9.4. Ibid for the Schrödinger equation. a) L2-norm, k = 2 b) L2-norm, k = 4. Only the implicit

schemes described, because the explicit schemes are unstable.
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(e.g. its Courant parameter) for any number Q, and the parameters really depend on the value

Q. Thus, we evaluate the effectiveness order by numerical experiments.

Thus, the choice of the most effective difference scheme cannot be universal. We obtain

from the Tables 8.1–8.6 and 9.2–9.3 that the choice of an optimal scheme from our list should

depend on the smoothness of the anticipated solutions. This smoothness can be estimated by

the smoothness of the right-hand side of equations (1.1) or (1.2). Probably, the most useful

scheme is C3I.

10. Monotony of One-Level Difference Approximations of the

Diffusion Equation

The Green function

G(t, x, ξ), t > 0, x, ξ ∈ [0, 2π],

of the periodic mixed boundary problem for homogeneous Eq. (2.1)

u (0, x) 7→ u (t, x) =

2π
∫

0

G(x, ξ, t)u (0, ξ) dξ, G(x, ξ, 0) = δ(x− ξ),

for homogeneous diffusion Eq. (1.1) at all t > 0 has the following properties:

i) positiveness: G(x, ξ, t) > 0;

ii) symmetry: G(x, ξ, t) = G(ξ, x, t);

iii) it has the following unique minimum and maximum:

max
ξ

G(x, ξ, t) = G(x, x, t), min
ξ

G(x, ξ, t) = G(x, x+ π, t);

iv) it is strongly decreasing with respect to variable ξ on the segments: [x, x+ π] , [x, x− π] .

Fig. 10.1. The solution u(τ, x) of diffusion Eq. (1.1) by the compact schemes a) C3I and b) C5I at

t = τ with ν = 0.1 for the Kronecker initial data are not positive. However, negative values are small

and they become still smaller for u(2τ, xj), u(3τ, xj), etc.

In this Sect. we will verify the properties i), iii), iv) for solutions u(τ, xj) of the difference

schemes with the Kronecker initial data u(0, xj) = δj0 at t = τ . The property ii) is fulfilled for

all considered schemes.

The properties iii) and iv) are fulfilled for the Euler scheme E3 at ν ≤ 1/3; the property i)

at ν ≤ 1/2. It is equivalent here to the stability condition.
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Table 10.1: The limits of various kinds of monotony. The schemes are weakly non-monotonic at ν < ν1.

ν E3 E5 C3I C5I CN

ν1 0 1/6 1/6 0.69 0

ν2 1/3 17/30 0.53 0.47 0.71

ν3 1/2 2/3 1.21 1.13 1.49

Table 10.2: The errors (C and L2norms) of the 3-point implicit schemes for diffusion equation. We use

the parameters, which are optimal for effectiveness under the restriction ν1 < ν < ν2.

Q 21000 42000 84000 168000 336000 772000

k Scheme C L2 C L2 C L2 C L2 C L2 C L2

2 C3I 54.5 42.17 41.95 32.56 31.61 24.46 24.64 19.05 19.30 14.89 14.34 11.05

2 CN 36.60 28.70 28.51 22.28 22.14 17.22 17.05 13.21 13.45 10.41 10.09 7.81

3 C3I 7.71 5.99 4.84 3.77 2.90 2.25 1.84 1.42 1.16 .90 .66 .51

3 CN 4.61 2.98 2.89 1.87 1.81 1.16 1.10 0.71 0.7 0.45 0.40 .26

4 C3I 0.55 0.324 0.25 0.12 0.08 0.04 0.035 0.017 0.014 0.007 0.004 0.002

4 CN 2.12 .86 1.44 0.53 0.90 0.33 0.55 0.20 0.353 0.128 0.202 0.073

The properties i), iii), and iv) are not fulfilled for the Euler scheme E5, since a1 = −1/(12h2) <

0. The property i) is fulfilled for the compact scheme C5E at ν ∈ [1/6, 2/3] only. The inequality

u(τ, x0) ≥ u(τ, x0 ± h)

is fulfilled at ν ≤ 17/30. Since all the properties i)–iv) are fulfilled on the segment of the

Courant number ν ∈ [1/6, 17/30] only.

As about one-layer implicit scheme, we can compute numerically for the Kronecker initial

data the solution and verify the inequality

u(τ, xj) ≥ 0,

for all j. We can use alternatively the discrete Fourier representation for the symbol σ (ξ). For

instance, we obtain for 3-points stencils:

σ (ξ) =
b1 + 2a1 cos (ω)

b0 + 2a0 cos (ω)
=

N−1
∑

j=0

αj exp (jω), ω = ξh,

since

αj = u(τ, xj)

at the Kronecker initial data. The coefficients can be calculated by residual theory, too.

Fig. 10.2. The solution u(τ, xj), according to the scheme C5E for the various values of the Courant

number: a) ν = 0.5, b) ν = 0.6, c) ν = 0.7.
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Fig. 10.3. The minimal value of the solution B(ν) = min
j

[u(τ, xj)] for implicit schemes for the Kronecker

initial data at various values of the Courant number. a) Compact scheme C3I, b) Compact scheme

C5I, c) Scheme CN. N = 50.

Fig. 10.4. The solutions for implicit schemes at t = τ are very close a) ν = 1, when ν2 < ν < ν3;

b) ν = 2, when ν > ν3. The property u(τ, x0) ≥ u(τ, x0 ± h) is not fulfilled. On the right graph the

values u(τ, x0) are negative.

If the Courant number ν ≪ 1, then the scheme CN is monotonic unlike the compact schemes

C3I and C5I. They have small negative coefficients, see Fig. 10.1 and Table 10.1 at ν < ν1.

However, the weak effect (weak non-monotony) may be essential for non-smooth solutions only.

The functions B(ν) = min
j

[u(τ, xj)] are submitted on the Fig. 10.3. We can see, that the

compact schemes are weakly non-monotonic, unlike classical CN scheme. However, the effect

is not too essential for practical goals, because the absolute values of the negative coefficients

are very small.

The property u(τ, x0) ≤ u(τ, x0 ± h) is fulfilled if ν ≤ ν2. Moreover, at ν > ν3 the central

value u(τ, x0) is negative.

The coefficients of the implicit schemes may be estimated. The following asymptotic for

Table 10.3: Same as Table 10.2 except under.

Q 21000 42000 84000 168000 336000 772000

k Scheme C L2 C L2 C L2 C L2 C L2 C L2

2 C3I 38.35 29.72 30.53 23.62 23.36 18.09 18.13 13.98 14.34 11.07 10.71 8.25

2 CN 27.58 21.46 21.59 16.77 17.06 13.25 13.25 10.25 10.45 8.08 7.78 6.02

3 C3I 4.13 3.21 2.73 2.11 1.66 1.29 1.03 .80 .66 .51 .38 .29

3 CN 2.74 1.76 1.73 1.11 1.11 0.71 0.68 0.44 0.43 0.28 0.24 0.16

4 C3I 0.194 0.094 0.079 0.040 0.030 0.015 0.012 0.006 0.005 0.002 0.002 0.001

4 CN 1.36 0.50 0.86 0.32 0.55 0.20 0.34 0.12 0.22 0.08 0.12 0.04
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Fig. 10.5. The asymptotics’ parameters of the solutions u(τ, xj) as j → ∞ according to formula (10.1)

or (10.2). a) the functions C(ν); b) the functions S(ν). The coefficients of C5I satisfy to asymptotic

formula (10.1) at small ν < 0.2, only.

1 ≪ j ≪ N :

u(τ, xj) ≈ C(ν)(−1)j+1 exp[S(ν)|j|] (10.1)

is very exact for the scheme C3I at ν < ν1 and for the scheme C5I at ν < 2. We call the

phenomenon of alternative signs as the weak non-monotony. As about the coefficients of the

scheme CN and the scheme C3I at ν > ν1, the signs are positive:

u(τ, xj) ≈ C(ν) exp[S(ν)|j|]. (10.2)

The corresponding functions C(ν), S(ν) are represented on the Fig. 10.5.

We evaluated effectiveness of the implicit schemes in the Sect.9. Let us repeat the compari-

son (on the tests iv) ) under the following additional restrictions ν1 < ν < ν2 or < ν < ν3. The

results of the experiments see Table 10.2 and 10.3.

11. The Total Probability Conservation for the Homogeneous

Schrödinger Equation

The first integral of the homogeneous Schrödinger equation
∫ 2π

0 |u(t, x)|2 dx is conserved

with time t, if the function u(t, x) is a solution of the equation with periodic boundary condi-

tions. All considered explicit schemes are unstable. The implicit schemes C3I, C5I, and CN are

stable and non-dissipative: the discrete version of the first integral
N
∑

j=1

|u(t, xj)|
2 is conserved

with discrete time t with machine precision. We verified it for the test solutions i) and ii) at

k = 2, 4.

12. Summary

We have demonstrated various types of the compact schemes for typical examples of evo-

lutionary linear PDEs (both homogeneous and non-homogeneous): the standard construction

algorithm, coefficients, and comparison with the classical difference schemes. A user can choose

the suitable compact scheme from the list for his/her concrete computational problem. Usually

the relevant compact scheme is preferable. We are going to consider compact schemes for other

examples of evolutionary PDE (e.g. equation of rod lateral vibrations) in the next paper.
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The classical approach is: two separate algorithms for approximation with respect to time

and space. The compact approach is: unite approximation with respect to all variables. We

obtain a higher approximation order as the result of compact approach. However, the effec-

tiveness of schemes depends on the assumed test solution smoothness. The approach can be

generalized for equations with variable coefficients, for several spatial variables, for systems of

equations, and for higher order equations with respect to time.

There are several kinds of monotony restrictions for difference schemes, which approximate

the homogeneous diffusion equation. The compact schemes are preferable in comparisons with

classic one under such restrictions too.

The implicit compact schemes conserve the discrete analog of the first integral of the homo-

geneous Schrödinger equation
2π
∫

0

|u(t, x)|2 dx with the computer precision.

Thus, the compact schemes are preferable for a wide class of applied computational prob-

lems, and most universal scheme is, perhaps, the implicit scheme C3I.

The important detail is, an accurate approximation of boundary conditions in the mixed

problem for a PDE is necessary for the exact approximation of the whole problem.
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