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Abstract

A new HSS-like iterative method is first proposed based on HSS-like splitting of non-

Hermitian (1,1) block for solving saddle point problems. The convergence analysis for

the new method is given. Meanwhile, we consider the solution of saddle point systems

by preconditioned Krylov subspace method and discuss some spectral properties of the

preconditioned saddle point matrices. Numerical experiments are given to validate the

performances of the preconditioners.
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1. Introduction

We consider the solution of the following saddle point linear system

Ax =

[
A B∗

−B 0

] [
x

y

]
=

[
f

g

]
= b, (1.1)

where A ∈ Cn×n is a non-Hermitian positive definite matrix, that is, the matrixH = (A+A∗)/2,

the Hermitian part of A, is positive definite, B ∈ Cm×n, with m ≤ n, has full row rank. Such

linear systems arise in a large number of scientific computing and engineering applications

(see for instance [11-12, 18-21, 25-26, 31-32, 34]). As such systems are typically large and

sparse, iterative methods become more attractive than direct methods for solving the saddle

point problem (1.1). Solution by iterative methods can be found in the literature, such as

Uzawa-type schemes [16, 18, 36], SOR-like and GSOR iterative methods [14, 16, 31, 37], matrix

splitting methods [1-4, 6-14, 17, 23-24, 27-30, 33], iterative projection methods [35], restrictively

preconditioned conjugate gradient (RPCG) methods [5, 15] and iterative null space methods

[18], and so on.

In [6], Bai, Golub and Ng presented an Hermitian and skew-Hermitian splitting (HSS)

method for solving non-Hermitian positive definite linear systems. The use of HSS as a sta-

tionary iteration for solving saddle point systems has been proposed in [2-3, 9, 13], where it
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was shown that the iteration converges for a large class of problems. Bai, Golub and Ng [8,

13] further generalized HSS to positive-definite and skew-Hermitian splitting (PSS), normal

and skew-Hermitian splitting (NSS) and considered preconditioners based on these splittings.

Pan, Ng and Bai [28 proposed two preconditioners for the saddle point problem with a non-

Hermitian positive definite (1,1) block A, using the HSS and PSS of A, not based on using

of the coefficient matrix A as a preconditioner for Krylov subspace methods. Recently, Jiang

and Cao [23] presented a local Hermitian and skew-Hermitian iterative method and analyzed

the convergence of the LHSS method. Zhang, Ren and Zhou [33] also presented an HSS-based

constraint preconditioner, in which the (1,1) block of the preconditioner is constructed by the

HSS method for solving the non-Hermitian positive definite linear systems.

In this paper, we propose a new HSS-like iterative method for the saddle point problem (1.1)

based on the HSS of the (1,1) block A. We mainly focus on the case that A is a non-Hermitian

positive definite matrix with the Hermitian part. We first establish a new HSS-like iterative

method for the saddle point problem (1.1) and then give the convergence analysis of the new

method in Section 2. In Section 3, we will show that the HSS-like iteration can provide an

effective preconditioner for Krylov subspace methods applied to (1.1). Meanwhile, we present

a modified HSS-like preconditioner and give spectral analysis of the preconditioned matrix.

Numerical experiments are presented in Section 4. Meanwhile, we draw some conclusions.

2. The New HSS-like Iteration Method

From now on, we will adopt the general notation

A =

[
A B∗

−B 0

]
(2.1)

to represent the non-Hermitian saddle point matrix of Eq. (1). We assume that A is non-

Hermitian positive definite, and thatB is of sizem×n and has full row rank. LetH = (A+A∗)/2

and S = (A−A∗)/2 be its Hermitian and skew-Hermitian parts.

Let α > 0 be a parameter, and consider the following splitting of A,

A =Mα −Nα =
1

2α
(αI +H)(αI + S)− 1

2α
(αI −H)(αI − S).

Note that A is non-Hermitian positive definite. ThenMα = 1
2α (αI+H)(αI+S) is nonsingular.

Thus we make the following special splitting:
[

A B∗

−B 0

]
=

[
1
2α (αI +H)(αI + S) 0

−B Q

]
−
[

1
2α (αI −H)(αI − S) −B∗

0 Q

]
,

where Q is a Hermitian positive definite matrix. We propose a new iterative method based on

this special splitting.

Given an initial guess x0 ∈ Rn, y0 ∈ Rm, the new HSS-like iteration is given as follows:
[
Mα 0

−B Q

] [
xk+1

yk+1

]
=

[
Nα −B∗

0 Q

] [
xk
yk

]
+

[
f

g

]
,

or equivalently, it can be written as
{
xk+1 = xk +M−1

α (f −Axk −B∗yk),

yk+1 = yk +Q−1(Bxk+1 + g).
(2.2)
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Remark 2.1. When the (1,1) block A of the saddle point matrix is Hermitian positive definite,

the HSS-like iterative method (2.2) is a special case of the PIU method in [16].

In the following, we consider the convergence property of the local HSS-like iteration. Note

that the iteration matrix of this iteration scheme is

Tα =

[
Mα 0

−B Q

]−1 [
Nα −B∗

0 Q

]
. (2.3)

Let ρ(Tα) denote the spectral radius of the iteration matrix Tα. Then the local HSS-like

iteration converges if and only if ρ(Tα) < 1. Let λ be an eigenvalue of Tα and (u∗, v∗)∗ be a

corresponding eigenvector, where u ∈ Cn and v ∈ Cm. Then we have

Tα
[
u

v

]
= λ

[
u

v

]
,

or equivalently,
{
(α2 − αA+HS)u− 2αB∗v = λ(α2 + αA +HS)u,

λBu = (λ− 1)Qv.
(2.4)

To prove the convergence of the iterative scheme (2.2), we first assume λ 6= 0 and give some

useful lemmas.

Lemma 2.1. Let A be a non-Hermitian matrix, with the Hermitian part H = (A+A∗)/2 being

positive definite, and the matrix B has full row rank. If λ is an eigenvalue of iteration matrix

Tα defined by (2.3), then λ 6= 1.

Proof. If λ = 1 and (u∗, v∗)∗ be the corresponding eigenvector, then from (2.4) we have
{
Au+B∗v = 0,

−Bu = 0.
(2.5)

Note that the above equation can be rewritten as
[

A B∗

−B 0

] [
u

v

]
= 0. (2.6)

It is easy to know that the coefficient matrix of (2.6) is nonsingular. Hence u = 0 and v = 0,

which contradicts the assumption that (u∗, v∗)∗ is an eigenvector of the iteration matrix Tα. So
λ 6= 1. �

Lemma 2.2. Let A be a non-Hermitian matrix with the positive definite Hermitian part H =

(A+A∗)/2, and the skew-Hermitian part S = (A−A∗)/2. Let the matrix B have full row rank.

If (u∗, v∗)∗ is an eigenvector of the iteration matrix Tα corresponding to the eigenvalue λ, then

u 6= 0. Moreover, if v = 0, then |λ| < 1.

Proof. If u = 0, then from (2.4) we have B∗v = 0 and Qv = 0. Since B has full row-rank

and Q is a Hermitian positive definite matrix, we have v = 0, which contradicts the assumption

that (u∗, v∗)∗ is an eigenvector. Therefore, u 6= 0.

If v = 0, then from (2.4), we have

(α2 − αA+HS)u = λ(α2 + αA+HS)u.
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That is to say,

(αI −H)(αI − S)u = λ(αI +H)(αI + S)u,

which is equivalent to

1

2α
(αI −H)(αI − S)u = λ

1

2α
(αI +H)(αI + S)u. (2.7)

If we define Mα = 1
2α (αI + H)(αI + S) and Nα = 1

2α (αI − H)(αI − S), then (2.7) can be

rewritten as

M−1
α Nαu = λu.

Note that u 6= 0, we know that λ is an eigenvalue of M−1
α Nα. From [6], we get that |λ| < 1, for

∀α > 0. �

Lemma 2.3. ([16, 38]) Both roots of the complex quadratic equation λ2 + φλ + ψ = 0 have

modulus less than one if and only if |ψ| < 1 and |φ − φ̄ψ| < 1 − |ψ|2, where φ̄ denotes the

conjugate complex of φ.

Theorem 2.1. Let A be a non-Hermitian matrix with the positive definite Hermitian part

H = (A+A∗)/2 and the skew-Hermitian part S = (A−A∗)/2. Let the matrix B have full row

rank and Q be a Hermitian positive definite matrix. Assume that (u∗, v∗)∗ is an eigenvector of

the iteration matrix Tα corresponding to the eigenvalue λ. Denote

u∗Au = a+ bi, u∗HSu = c+ di, u∗B∗Q−1Bu = e.

Then the local HSS-like iteration is convergent if a, b, c, d, e satisfy the following condition:

aα2 + ac+ bd > 0 and 0 ≤ e <
2aα(aα2 + ac+ bd)

a2α2 + d2
.

Proof. Let λ be an eigenvalue of Tα and (u∗, v∗)∗ be a corresponding eigenvector. From

Lemmas 2.1 and 2.2, we have λ 6= 1 and u 6= 0, without loss of generality, we further assume

u∗u = 1. From the second equality of the Eq. (2.4), we have

v =
λ

λ− 1
Q−1Bu. (2.8)

If Bu = 0, it follows from (2.8) that v = 0. From Lemma 2.2, we have |λ| < 1.

If Bu 6= 0, which means that e > 0 according to the definition of e. By substituting (2.8)

into the first equality of (2.4), we get

(λ− 1)(α2I − αA+HS)u− 2αλB∗Q−1Bu = λ(λ − 1)(α2I + αA+HS)u.

Multiplying both sides of this equality from left with u∗, we have

(α2+αu∗Au+u∗HSu)λ2−2(α2+u∗HSu−αu∗B∗Q−1Bu)λ+(α2−αu∗Au+u∗HSu) = 0. (2.9)

If (α2 + αu∗Au+ u∗HSu) = 0, then α2 + u∗HSu = −αu∗Au. From (2.9), we have

λ =
α2 − αu∗Au + u∗HSu

2(α2 + u∗HSu− αu∗B∗Q−1Bu)
=

u∗Au

u∗Au+ u∗B∗Q−1Bu
.

Since u∗Au = a+ bi, a > 0, u∗B∗Q−1Bu = e > 0, we get |λ| < 1.
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If (α2 + αu∗Au+ u∗HSu) 6= 0, from (2.9), we have

λ2 − 2
α2 + u∗HSu− αu∗B∗Q−1Bu

α2 + αu∗Au + u∗HSu
λ+

α2 − αu∗Au+ u∗HSu

α2 + αu∗Au+ u∗HSu
= 0.

Note that u∗Au = a+ bi, u∗HSu = c+ di and u∗B∗Q−1Bu = e, we have

λ2 − 2
(α2 − eα+ c) + di

(α2 + aα+ c) + (d+ bα)i
λ+

(α2 − aα+ c) + (d− bα)i

(α2 + aα+ c) + (d+ bα)i
= 0. (2.10)

Now, according to Lemma 2.3 we know that both roots of the complex quadratic Eq. (2.10)

satisfy |λ| < 1 if and only if

| (α
2 − aα+ c) + (d− bα)i

(α2 + aα+ c) + (d+ bα)i
| < 1, (2.11)

and

|−4aα(α2 − eα+ c)− 4bdα− 4deαi

(α2 + aα+ c)2 + (d+ bα)2
| < 4aα(α2 + c) + 4bdα

(α2 + aα+ c)2 + (d+ bα)2
. (2.12)

By simplifying the inequality (2.11) and (2.12) we immediately obtain the condition that

we demonstrate. �

Remark 2.2. For the iteration matrix Tα, it needs compute the inverse of Mα. We remark

that exact inverses of the matrices αI + H and αI + S are quite expensive, and therefore,

some further approximations, e.g., the incomplete Cholesky factorization and the incomplete

orthogonal-triangular factorization to these two matrices may be respectively adopted in actual

applications [6].

3. Krylov Subspace Acceleration

In this Section, we will show that the HSS-like iteration method can provide effective pre-

conditioners for Krylov subspace methods applied to (1.1).

Let

Mα =

[
1
2α (αI +H)(αI + S) 0

−B Q

]
, Nα =

[
1
2α (αI −H)(αI − S) −B∗

0 Q

]
.

It is easy to see that there is a unique splitting A = Mα −Nα with Mα nonsingular such that

the iteration matrix Tα is the matrix induced by that splitting, i.e.,

Tα = M−1
α Nα = I −M−1

α A,

where I denotes the identity matrix. It is therefore possible to rewrite the iteration (2.2) in

correction form:

xn+1 = xn +M−1
α rn, rn = b−Axn,

where x = (x∗, y∗)∗, b = (f∗, g∗)∗. This will be useful when we consider Krykov subspace

acceleration.

Obviously, the linear system Ax = b is equivalent to the linear system

(I − Tα)x = M−1
α Ax = M−1

α b.
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This equivalent system can be solved with GMRES. Hence, the matrixMα can be seen as a pre-

conditioner for GMRES. That is, the preconditioner Mα is used to accelerate the convergence

rate GMRES applied to Ax = b.

We can use

Mα =

[
1
2α (αI +H)(αI + S) 0

−B Q

]

as an HSS-like preconditioner. Application of the preconditioner within GMRES requires solv-

ing a linear system of the form

Mα

[
z1
z2

]
=

[
1
2α (αI +H)(αI + S) 0

−B Q

] [
z1
z2

]
=

[
r1
r2

]

at each iteration. This is done by first solving

(αI +H)(αI + S)z1 = 2αr1 (3.1)

for z1, and followed by

−Bz1 +Qz2 = r2.

For Eq. (3.1), we can solve it by first solving (αI+H)v = 2αr1 and followed by (αI+S)z1 =

v.

Under the assumptions of Theorem 2.1, since M−1
α A = I − Tα, it is easy to see that for all

α > 0 the eigenvalues of the preconditioned matrix M−1
α A are entirely contained in the open

disk of radius 1 centered at (1, 0). In particular, the smaller the spectral radius of Tα is, the

more clustered the eigenvalues of the preconditioned matrix (around 1) will be. A clustered

spectrum often translates in rapid convergence of GMRES, see [18], but careful attention must

be paid to the conditioning and eigenvalue distribution of the matrix A itself, which determines

convergence rate of the inner iteration, see [22] for a comprehensive survey.

We next present a modified preconditioner M̂α and give the spectral property of the pre-

conditioned saddle point matrix M̂−1
α A, where

M̂α =

[
αI +A 0

−B Q

]
.

It is easy to see that the eigenvalues of the preconditioned matrix M̂−1
α A satisfy the generalized

eigenvalue problem

[
A B∗

−B 0

] [
u

v

]
= λ

[
αI +A 0

−B Q

] [
u

v

]
. (3.2)

Note that the above equation can be equivalently written as
{
Au +B∗v = λ(αI +A)u,

(λ − 1)Bu = λQv.
(3.3)

If u = 0, then from the second equality of (3.3) we have Qv = 0. Since Q is positive definite,

we have v = 0, which contradicts the assumption that (u∗, v∗)∗ is an eigenvector. Therefore,

u 6= 0.

If Bu = 0, from the second equality of the Eq. (3.3), we have v = 0 and

Au = λ(αI +A)u.
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Multiplying both sides of the above equality from left with u∗, we have

u∗Au = λ(αu∗u+ u∗Au).

Thus, we have λ = u∗Au
αu∗u+u∗Au

. It is easy to see that λ→ 1 when α→ 0.

If Bu 6= 0, it is easy to know that λ 6= 0. The second equality of Eq. (3.3) gives v =
λ−1
λ
Q−1Bu. Substituting it into the first equality of Eq. (3.3) gives

λAu+ (λ− 1)B∗Q−1Bu = λ2(αI + A)u.

Let u∗u = 1. Multiplying both sides of the above equality from left with u∗ we have

λu∗Au+ (λ− 1)u∗B∗Q−1Bu = λ2(α+ u∗Au).

That is to say,

(α+ u∗Au)λ2 − (u∗B∗Q−1Bu+ u∗Au)λ+ u∗B∗Q−1Bu = 0. (3.4)

Let u∗Au = a+ bi, u∗B∗Q−1Bu = e > 0. We have

(α + a+ bi)λ2 − (e+ a+ bi)λ+ e = 0. (3.5)

For the Eq. (3.5) with complex coefficients, the quadratic formula for the roots of this quadratic

equation is

λ =
(e+ a+ bi)±

√
d

2(α+ a+ bi)
, (3.6)

where the discriminant d = (e+ a+ bi)2 − 4e(α+ a+ bi) is the complex number. We can write

it in the form

d = d1 + d2i,

where d1 = (a − e)2 − b2 − 4αe and d2 = 2b(a − e) are real numbers. It was shown in the

lesson on taking a square root of a complex number of this module that the square root of the

complex number d = d1 + d2i has two values.

The first value is the complex number

w1 = s1 + t1i,

where

s1 =

√√
d21 + d22 + d1

2
, t1 =

√√
d21 + d22 − d1

2
,

and the second value is w2 = −w1.

By computation, we have

s1 =

√√
[(a− e)2 + b2]2 + 8αe[2αe+ b2 − (a− e)2 + (a− e)2 − b2 − 4αe

2
, (3.7)

and

t1 =

√√
[(a− e)2 + b2]2 + 8αe[2αe+ b2 − (a− e)2 − (a− e)2 + b2 + 4αe

2
. (3.8)
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From (3.7) and (3.8), we have s1 →
√
(a− e)2 and t1 → b when α→ 0. Thus we have

λ→ (e + a+ bi)± (
√
(a− e)2 + bi)

2(a+ bi)
. (3.9)

From (3.9), we know that λ→ 2 and λ→ e(a−bi)
a2+b2

when a > e, and if a < e, we have λ→ 1 and

λ→ a(a−bi)
a2+b2

.

4. Numerical Experiments

In this section, we present numerical experiments for the saddle point linear system (1.1)

in order to verify the effectiveness of the local HSS-like iterative method. All the numerical

experiments were performed with MATLAB 7.0. The machine we have used is a PC-AMD, CPU

T7400 2.2GHz process. The GMRES method is used to solve the above test problem. The initial

guess is taken to be x(0) = 0 and the stopping criterion is chosen as ‖b−Ax
(k)‖2

‖b‖2
≤ 10−6. IT and

CPU represent the number of iteration steps and elapsed CPU time in seconds, respectively.

We consider the saddle point matrix A of the following form:

A =

[
A BT

−B 0

]
, (4.1)

where the sub-matrices A = υA1 +N , υ can be regarded as the viscosity, and N has only two

diagonal lines of nonzero, which start from the 2nd and the nth colomns, i.e.,

N =




0 −1 0 · · · 0 −1 0 · · · 0

0 0 −1 · · · 0 0 −1
. . . 0

0 0 0 −1 0 · · · 0
. . . 0

...
. . .

. . .
. . .

. . .
. . . · · · . . . −1

0 · · · 0 0 0 −1 0 · · · 0

0 0 · · · 0 0 0 −1 0
...

0 0 0 · · · 0 0 0 −1 0
...

. . .
. . .

. . . 0
. . . 0

. . . −1

0 · · · 0 0 0 · · · 0 0 0




, (4.2)

and A1, B are taken from [7], i.e.,

A1 =

[
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

]
, B =

[
I ⊗ F

F ⊗ I

]
,

and

T =
1

h2
tridiag(−1, 2,−1) ∈ Rp×p, F =

1

h
tridiag(−1, 1, 0) ∈ Rp×p,

with ⊗ being the Kronecker product symbol and h = 1
p+1 the discretization meshsize. The

right vectors are defined as

f = (1, 1, · · · , 1) ∈ Rn, g = (0, 0, · · · , 0) ∈ Rm, n = 2p2,m = p2.

For this example, the matrix A is nonsymmetric and positive real.



450 Q.B. LIU, G.L. CHEN AND C.Q. SONG

Table 4.1: Spectral radius of the iteration matrix Tα with υ = 0.01 for different α.

γ 0.01 0.02 0.03 0.04 0.05 0.07 0.1

ρ(Tα) 0.9920 0.9840 0.9773 0.9831 0.9878 0.9918 0.9945

Table 4.2: Spectral radius of the iteration matrix Tα with α = 0.03 for different υ.

δ 0.001 0.002 0.005 0.008 0.01 0.015 0.02

ρ(Tα) 0.9981 0.9961 0.9890 0.9813 0.9773 0.9755 0.9736

In the following experiments, we take Q = 1
γ
Im with γ = ‖A‖

‖B‖2
. In Tables 4.1-4.2, we first

present some result on the spectral radius of the iteration matrix Tα with different values of

υ and α. The purpose of these experiments is just to investigate the convergence behavior

of HSS-like iterative method. Clearly, all results show that the HSS-like iterative method is

convergent. Meanwhile, we see that the spectral radius is very close to 1. This also shows

the the convergence of HSS-like iterative algorithm. So we discuss the preconditioned Krylov

subspace method with two preconditioners.

It is well known that the spectral properties of the preconditioned matrix give important

insight in the convergence behavior of the preconditioned Krylov subspace methods. For sym-

metric problems, the rate of convergence of Krylov subspace methods like CG or MINRES

depends on the distribution of the eigenvalues of A. A key for the rapid convergence of an

iterative method for a linear system of the form Ax = b is the availability of an effective pre-

conditioner. Thus, in this subsection, based on the above-mentioned ideas in order to illustrate

the above results in Section 3, there is a need to test the eigenvalue distributions of the precon-

ditioned matrix M−1
α A and M̂−1

α A. The eigenvalue distributions of the preconditioned matrix

M−1
α A with v = 1 and v = 0.1 are plotted in Fig. 4.1 and Fig. 4.3, respectively. Thus, from

0 0.5 1 1.5 2 2.5 3 3.5
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Fig. 4.1. Eigenvalue distribution of the preconditioned matrix M
−1

1 A with v = 0.1.
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0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Fig. 4.2. Eigenvalue distribution of the preconditioned matrix M̂
−1

1 A with v = 0.1.

Fig. 4.1 and Fig. 4.3, we see that the eigenvalue distribution of the preconditioned matrix

M−1
α A is regular and gathering. In the end, in Fig. 4.2 and Fig. 4.4 we display the eigenvalue

distribution of the preconditioned matrix M̂−1
α A with v = 1 and v = 0.1, respectively. Clearly,

the eigenvalues of the preconditioned matrix M̂−1
α A have λ → 1 when α → 0, the rest of the

eigenvalues is close to b
a
when α → 0, which is in accordance with the spectral analysis of the

preconditioned matrix M̂−1
α A in Section 3.

To illustrate the validity of our preconditioners, we next to test the performance of four

preconditioners, one is the alternating LHSS preconditioner Pα [27], and another is the precon-

ditioner P̂α in [30] which are defined as follows, respectively.

Pα =
1

2α
(αI +H)(αI + S) and P̂α =

1

2α
(αI + Ĥ)(αI + Ŝ)

with

H =

[
H BT

0 0

]
and S =

[
S 0

−B 0

]
,

and

Ĥ =

[
A BT

0 0

]
and Ŝ =

[
0 0

−B 0

]
.

In Tables 4.3-4.4, we give some results to illustrate the convergence behavior of GMRES(10)

preconditioned by Pα, P̂α, Mα and M̂α with the different values of v and α. “IT” denotes the

number of iterations. “CPU(s)” denotes the CPU time (in seconds) required to solve a problem.

The purpose of these experiments is to investigate the influence of the eigenvalue distribution

on the convergence behavior of GMRES(10).

Tables 4.3-4.4 contain experimental results for alternating LHSS and block HSS-like pre-

conditioned GMRES(10) on different orders of matrix. From Table 4.3, shows that the pre-
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Fig. 4.4. Eigenvalue distribution of the preconditioned matrix M̂
−1

0.1A with v = 1.

conditioners P̂α and M̂α are more effective than the preconditioners Pα and Mα for outer

iterations of the preconditioned matrices, and inner iteration of four exact preconditioners Pα,

P̂α, Mα and M̂α are hardly sensitive to change on the order of the coefficient matrix. From

Table 4.4 we see that the preconditioners Mα and M̂α are more effective than the precondi-

tioners Pα and P̂α for outer iterations of the preconditioned matrices, and inner iterations of

four exact preconditioners are relatively stable. From Table 4.3-4.4 we can see that changes of

outer iterations of the preconditioner Mα and M̂α are very obvious on different values of v and
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Table 4.3: Outer(inner) iterations and CPU(s) of GMRES(10) with v = 1 and α = 0.1.

m+ n 300 675 1200 1875 2700

Pα IT 12(9) 10(6) 7(6) 8(6) 8(7)

CPU(s) 0.3277 1.9266 4.8028 17.1657 44.1211

P̂α IT 3(9) 4(5) 4(8) 4(7) 4(8)

CPU(s) 0.0975 1.6216 2.7936 8.0511 20.9726

Mα IT 26(7) 24(6) 16(6) 13(10) 13(7)

CPU(s) 0.5412 3.3398 9.5012 27.3087 71.4579

M̂α IT 2(4) 2(8) 2(8) 2(8) 2(8)

CPU(s) 0.0380 0.2042 1.0390 3.6227 10.0373

Table 4.4: Outer(inner) iterations and CPU(s) of GMRES(10) with v = 0.01 and α = 1.

m+ n 300 675 1200 1875 2700

Pα IT 13(10) 15(6) 14(7) 19(1) 21(1)

CPU(s) 0.4005 2.4773 9.6170 39.9245 113.3451

P̂α IT 14(9) 10(7) 15(1) 14(8) 13(10)

CPU(s) 0.3435 1.8039 9.4101 29.1805 68.5944

Mα IT 6(10) 6(10) 6(5) 7(2) 7(10)

CPU(s) 0.1515 1.0157 4.3173 13.6992 42.5647

M̂α IT 8(6) 8(1) 7(9) 7(10) 7(9)

CPU(s) 0.1748 1.1974 5.0780 15.1742 37.9604

α. All results show that four preconditioners indeed improve the convergence of GMRES(10)

efficiently, and compared with preconditioners Pα, P̂α and Mα, the preconditioner M̂α may

be competitive under certain conditions.
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