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Abstract

Using outward rotations, we obtain an approximation algorithm for Max-Bisection
problem, i.e., partitioning the vertices of an undirected graph into two blocks of equal
cardinality so as to maximize the weights of crossing edges. In many interesting cases, the
algorithm performs better than the algorithms of Ye and of Halperin and Zwick. The main
tool used to obtain this result is semidefinite programming.
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1. Introduction

Given an undirected graph G = (V, E) and nonnegative weights w;; = w;; on the edges
(i,4) € E, the maximum cut problem ( Max-Cut) is that of finding the set of vertices S that
maximizes the weight of the edges in the cut (S,V \ S); that is, the weight of the edges with
one endpoint in S and the other in V'\ S. For simplicity, we usually set w;; = 0 for (i,j) ¢ E
and denote the weight of a cut (S,S) by w(S) = > w;;. The Maximum Bisection of

i€S,jEV\S
G = (V,E) is a partition of the vertex set V into two equally sized sets S and V' \ S so that
w(S) is maximized. In Max-Bisection (MB) problem, n = |V| is assumed to be even.

Max-Cut is well-known to be NP-hard and so is Max-Bisection. This means that one should
not expect to find a polynomial time algorithm for solving it exactly. Therefore many experts
are interested in developing polynomial time approximation algorithms for Max-Cut and Max-
Bisection. A (randomized) algorithm for the maximization problem is called (randomized) r-
approximation algorithm, where 0 < r < 1, if it outputs a feasible solution with its (expected)
value at least r times the optimum value for all instances of the problem.

The best known approximation ratio for Max-Cut is 0.87856 ([7]). Using outward rotations,
Zwick [14] obtain an approximation algorithm for Max-Cut that, in many interesting cases,
the algorithm performs better than the algorithm of Goemans and Williamson [7]. Feige,
Karpinski and Langberg [5] show that for graphs of degree at most A, their algorithm achieces
an approximation ratio of at least 0.87856 + ¢, where € > 0 is a constant that depends only
on A. In particular, using computer assisted analysis, they show that for graphs of maximal
degree 3, their algorithm obtains an approximation ratio of at least 0.921, and for 3-regular
graphs, the approximation ratio is at least 0.924. We refer to [2] for the survey of Max-Cut.
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To our knowledge, the best known approximation ratio for Max-Bisection is 0.7016 ([8]).
This work is an extension of the works of [1] and [12]. Feige Karpinski and Langberg [4] design
a 0.795 approximation algorithm for Max-Bisection restricted to regular graphs. In the case of
three regular graphs their results imply an approximation ratio of 0.834.

All the above works adopt the SDP relaxation for Max-Cut or Max-Bisection. SDP relax-
ations have been successfully applied to various graph optimization problems ([1]-[10], [12]-[14]).
Many experts put forward different techiques to get a good approximation solution from the
SDP relaxation (for example, see [7], [8], [12], and [14]). Using these techiques carefully, we
obtain an approximation algorithm for Max-Bisection that, in many interesting cases, the al-
gorithm performs better than the algorithm of Halperin and Zwick [8].

2. SDP Relaxation of MB

The MB problem can be formulated as the following binary integer program

. 1
w* := Max §Zwij(1—mixj)

i<j
st. > x;=0 (2.1)
i=1
m? =1,j=1--,n
Using the “triangle inequalities”, the SDP relaxation of MB becomes
1
w3PP ;= Max 3 Zwij(l — v - Vj)
1<J
s.t. > owviev; =0,
1<i,j<n
ViV v v > =1, 1<4,5,k<n (2.2)

—vi-v; = v v vy > -1, 1<4,5,E<n
v v+ —vj v > -1, 1<4,5,E<n
Vv v v — v -vp > =1, 1<4,5,k<n
llvjll=1, wv; € R™ =1, n.

To state it precisely, it is convenient to use the following notation.
W = Z w;; — The total weight of the edges of the graph.
i<j

A = wSPP /W — The ratio between the solution of the relaxation (2.2) and the total weight
of the edges in the graph.

B = w*/W — The ratio between the solution of the relaxation (2.1) and the total weight
of the edges in the graph.

Clearly w* < wSPP < W. By inductive method, one can prove that w* > W/2. So we get
that 1/2< B < A < 1.

We present an SDP-based approximation algorithm for MB as follows.
SDP-Algorithm

Step 1. SDP Solving: Solve (2.2) and obtain the vectors vy, - - -, vy,.

Step 2. Rotating: Rotate the vectors vy, - - -, v, into new vectors vf,---,v},.

Step 3. Randomized Rounding: Choose a random hyperplane (by choosing ran-
domly its normal r which is a vector uniformly distributed on the unit sphere),
and set S = {i|v} -r > 0}.



