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Abstract

In this note, we consider the backward errors for more general inverse eigenvalue prob-
lems by extending Sun’s approach. The optimal backward errors are defined for diagonal-
ization matrix inverse eigenvalue problem with respect to an approximate solution, and
the upper and lower bounds are derived for the optimal backward errors. The results may
be useful for testing the stability of practical algorithms.
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1. Introduction

Since the mid-1950’s, inverse eigenvalue problems have been important subjects in numerical
algebra and scientific and engineering computation. Many different kinds of inverse eigenvalue
problems have arisen from various applications, including control theory, structural machan-
ics, geology, molecular spectroscopy, and so on. The relevant conditions for the solvability,
perturbation analysis, and numerical methods can be found in the literature (see, e.g., [3,4]).

In this note we use C"*" to denote the set of n x n complex matrices, the notation A¥
denotes the conjugate transpose of A, A(A) is the spectrum of A. || -||r denotes Frobenius
norm. The relation A ~ B means that the same order matrices A and B have the same
eigenvalues. D, stands for the set of diagonal matrices of order n (See [5] for other symbols).

An inverse eigenvalue problem, roughly speaking, is how to determine the elements of a
matrix from its spectral data. One of the most important problems is the following inverse
eigenvalue problem.

Problem A. Given Ag, Ay, -+, A, € C™"™ and complex numbers Ay, -+, A\, find ¢ =
(c1,--+,cn) with complex components such that

A= Ao+ cxAp > A,
k=1

where A = diag(A\1,- -+, An).

If we take Ay = eke{(k =1,---,n), where e; denote the kth column of the identity matrix
of order n, this problem is known as the additive inverse eigenvalue problem.

Let ¢ = (¢1,-++,¢,) be an approximate solution to Problem A. In general, there are many
backward perturbations AAyg,---,AA, € C"*™, and AA € D,, such that

Ao+ AAg + > % (Ap + AAL) ~ A+ AA.
k=1
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It may be well asked: How close is the nearest Problem A for which ¢ is the solution?
There are various approaches to define backward errors for measuring the distance between
the original problem and the perturbed problems. We define the backward error 1(?)(¢) by

n 1/2
(@) = IAAoll7: + Y 6R IAAKIIE + 674 IIAAII%} :

min
(AAo,AAr, - AAL,AN)EG =

where the set G is defined by

(Adg, AAy, -+, Ady, AN)|AAg, -, AA, € C"" AA € D,

g = A0+AAO+E/C\k(Ak+AAk)ZA+AA
k=1
A =diag(M\, -, \n)

and 6 = (01,---,0p,41), in which 64,---,6,.4; are positive parameters.

Problem B. Estimate 1(?)(c).

For the following case, the explicit expression of 5(?)(¢) is derived by SunPl. A, -+, \,
are real numbers, Ay, Ay,---, A, are real symmetric matrices, AA,(k = 0,1,---,n) are real
symmetric matrices, AA is real digonnal matrix, and ¢ = (¢y, - - -, ¢,,) is an approximate solution

with real components to Problem A in such a case. One of main tools which were used by Sun
is the Mirsky inequality and the spectral decomposition theorem. However, for more general
matrices, these results are not true any more. Hence the purpose of this note is to extend Sun’s
method to consider more general Problem B. In general, the eigenvalues of real matrices are
complex numbers, and the solvability of Problem A has been discussed!”). So, in this note, our
discussion is not limited to the real case.

2. Main Results

We first prove two preliminary lemmas.
Lemma 1. TLet 4,B € C"*", and A be a normal matrix, \(4) = AL AB) =
{#j}j=1- Then, there exists a permutation 7(1),---,m(n) of {1,2,---,n} such that

ST =ty | < VRlIA = Bl
j=1

Lemma 2. Let A,B € C"*", A be a diagonalizable matrix. i.e., A = UAU!, where
U is nonsingular, A = diag(A1, -+, An),A(B) = {;}7_;. Then, there exists a permutation
(1), -+, m(n) of {1,2,---,n} such that

3N = e |* < m2(U)VRNA = Bl
j=1

where k2 (U) = ||U|2]|U1]|2-
Proof. By
U—I(A _ B)U =A— U_IBU,

where A is a normal matrix, and
MUBU) = \(B).



