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Abstract

We discuss AOR type iterative methods for solving non-Hermitian linear systems based
on Hermitian splitting and skew-Hermitian splitting. Convergence domains of iterative
matrices are given and optimal parameters are investigated for skew-Hermitian splitting.
Numerical examples are presented to compare the effectiveness of the iterative methods
in different points in the domain. In addition, a model problem of three-dimensional
convection-diffusion equation is used to illustrated the application of our results.
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1. Introduction

Given a nonsingular system of linear equations

Ax = b, A ∈ C
n×n, b ∈ C

n, (1.1)

where the coefficient matrix A is non-Hermitian, we assume that D = diag(A) is nonsingular.
Since both splittings A = M − N and D−1A = D−1M − D−1N lead to the same iteration
operator, we may assume, without loss of generality, that

A = I − B, where diag(B) = 0. (1.2)

It is convenient to regard any splitting M − N of A = I − B as having the identity incor-
porated into M, and we thus write

M = I − MB, and N = B − MB. (1.3)

Then, with AOR type iteration matrix [4]

Tω,γ = (I − γMB)−1{(1 − ω)I + (ω − γ)MB + ωN}, (1.4)

and cω,γ = ω(I − γMB)−1b, we have the associated AOR type iterative method [1, 3]

x(i+1) = Tω,γx(i) + cω,γ i = 1, 2, . . . .
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Letting

F =
B + B∗

2
and G =

B − B∗

2

denote, respectively, the Hermitian and skew-Hermitian parts of B, then the Hermitian splitting
of A is defined by [4]

A = Mh − Nh with Mh = I − F and Nh = G (1.5)

where we assume that Mh is invertible, which is, for instance, guaranteed if the Hermitian part
Mh of A is positive definite. The associated skew-Hermitian splitting of A is given by [4]

A = M s − Ns with M s = I − G and Ns = F. (1.6)

In this way, the specific splitting defined in (1.5) and (1.6) generates the following two AOR
type iterative methods

x(m) = T h
ω,γx(m−1) + ch

ω,γ (m = 1, 2, · · ·), (1.7)

where
T h

ω,γ = (I − γF )−1{(1 − ω)I + (ω − γ)F + ωG}, ch
ω,γ = ω(I − γF )−1b,

and

x(m) = T s
ω,γx(m−1) + cs

ω,γ (m = 1, 2, · · ·), (1.8)

where
T s

ω,γ = (I − γG)−1{(1 − ω)I + (ω − γ)G + ωF}, cs
ω,γ = ω(I − γG)−1b,

Each of these methods depends on two parameters γ and ω.
The last fourty years have produced many methods for solving linear systems. Much is

known in the literature [7, 8] about basic ones. AOR type method which was proposed by
A Hadjidimos in [3] in 1978 is a accelerated overrelaxation method. Using Hermitian and
skew-Hermitian matrix splitting and combining with krylov subspace iterative methods, many
methods have been developed [2, 5]. In [1] Bai has also given the convergence domain of the
matrix multisplitting relaxation methods. Based on the technique in [4], further discuss of the
convergence of AOR type methods will be given in our paper.

The organization of this paper is as follows. In section 2, we study the convergence properties
of AOR type iterative methods for Hermitian splitting and skew-Hermitian splitting and give
the near optimal parameters for skew-Hermitian splitting. In section 3, the three-dimensional
convection-diffusion equation is employed as a model problem to illustrate the application of
our results. Numerical experiments are presented in section 4 to compare the effectiveness of
our methods in different points of convergence domains.

2. Convergence of AOR type Iterative Methods

Lemma 2.1. If I−γMB is nonsingular and if τ is a eigenvalue of Tω,γ of (1.4) with eigenvector
v, normalized by v∗v = 1, then

τ =
1 − ω + (ω − γ)m + ωη

1 − γm
, where η = v∗Nv and m = v∗MBv. (2.1)


