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Abstract

We study a class of blockwise waveform relaxation methods, and investigate its con-
vergence properties in both asymptotic and monotone senses. In addition, the monotone
convergence rates between different pointwise/blockwise waveform relaxation methods re-
sulted from different matrix splittings, and those between the pointwise and blockwise
waveform relaxation methods are discussed in depth.
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1. Introduction

The waveform relaxation method is a basic and efficient iteration technique for solving
ordinary differential equations and differential-algebraic equations. It differs from classical iter-
ative techniques in that it is a continuous-time method, iterating with functions in a functional
space, and therefore is quite suitable for parallel computation. This kind of waveform re-
laxation method was first proposed by Lelarasmee, Ruehli and Sangiovanni-Vincentelli[19] in
VLSI-simulation, and was further studied and improved by many authors on both method
models and convergence properties. For example, Nevanlinna[23, 24] discussed the wave-
form relaxation method on finite interval in terms of Picard-Lindelof iteration, Janssen and
Vandewalle[18] studied the convolution SOR waveform relaxation methods, and Miekkala[20]
studied the applications of the waveform relaxation method to differential-algebraic equations.
In addition, Zubik-Kowal and Vandewalle[30] recently extended waveform relaxation technique
to functional-differential equations. For further details we refer to [20, 13, 14, 17, 21, 22] and
references therein.

However, so far as we know, most of these theoretical convergence results are about the
pointwise waveform relaxation method, and there is few about its blockwise alternative.

In this paper, we will consider convergence properties of the blockwise waveform relaxation
method for the linear initial value problems on the infinite interval [0, +00) in both asymptotic
and monotone senses. By making use of the block partition and the accelerated overrelaxation
techniques[16], we first set up a kind of blockwise waveform accelerated overrelaxation method.
This new method involves three arbitrary parameters, and therefore its convergence properties
can be considerably improved by suitable adjustments of these parameters. In addition, a series
of applicable and efficient blockwise waveform relaxation methods can be produced by various
choices of the parameters. Under suitable conditions, we prove the asymptotic convergence of
the blockwise waveform relaxation method for block H-matrix of different types. Moreover,
we demonstrate the monotone convergence properties as well as the monotone comparison
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theorems, which reveal the influence of the matrix splitting and the initial approximation upon
the convergence rate of this kind of method.

The organization of this paper is as follows. We introduce the definition of block H-matrix
and some related properties in Section 2, and establish the blockwise waveform relaxation
method in Section 3. The asymptotic and monotone convergence properties of the blockwise
waveform relaxation method are discussed in Sections 4 and 5, respectively. In Section 6, we
demonstrate the comparison theorem for the waveform relaxation methods. As a consequence,
the result of the convergence rates between the pointwise and blockwise waveform accelerated
overrelaxation methods is given in the monotone sense. We present numerical results by solving
a two-dimensional heat equation in Section 7, and at last, we end this paper with a brief
concluding remark in Section 8.

2. Preliminaries

The partial orderings “ <7, “ <” and the absolute value | o | in R” and R"*" are defined
according to the elements. For a matrix A € C**", let ¢(< n) and n;(< n)(i = 1,...,£) be

positive integers satisfying Ele n; = n, and define the blockwise vector and matrix spaces[3]

Vo(ni,...,ne) ={zeC |z=(f,...;a0)T, 2, €eC, i=1,....,0 }
Ly(ni,...,ng) ={AeC”™ | A= (4;), A e C¥>*ni ,j=1,...,0};
Ly r(ni,...,ne) = {M = (M;;) € Ly(n,...,ne)|M;; € C**™ nonsingular, i =1,...,¢},

which will be denoted simply by V,,,L,, and L, r, respectively, if there is no ambiguity.

A matrix G = (g;;) € R*™*™ is called an M-matrix if g;; < 0(¢ # j),i,5 = 1,...,n, and
G exists with G~! > 0; an H-matrix if its comparison matrix 9 (G) is an M-matrix, where
M(G) = (m;;) is an n x n matrix with m;; = [gi;| and m;; = —|gi;|(i # j); and an H-matrix
if G is an H-matrix satisfying g;; > 0(i = 1,...,n)[8]. Evidently, if we denote

DG:diag(glla-"agnn); BG:DG_Gy JG:DélBGa

and
Enxn:{M:(mij)|M€Rn><n’ mi; <0, i # 7, i,j:l,...,n},

then G € L™*" with positive diagonals is an M-matrix if and only if p(Jg) < 1[29], where p(e)
denotes the spectral radius of a matrix. For M € Ly, r, its type-I (type-II) block comparison
matrix (M) = ((M);;) € R (M) = ((M))s;) € RE<?) is defined by (M)i; = |[M;']|"!
()35 = 1) and (M)y; = —|IMyll (MD))is = —|IM5 Myl for i # j, i, = 1,....4; see
6, 7,9, 15, 25]. M € L, is called a type-I (type-II) block H-matrix if (M)(((M))) is
an M-matrix, and we simply denote it by M € Hg)(M € ng,n)). Evidently, it holds that
HD ¢ 5D,

For M € L,,, we use [M] = (||M;;||) € R**¢ to represent the block absolute value. The block
absolute value of a vector € V,, can be defined in an analogous way.

The following lemmas will be frequently used in what follows.

Lemma 2.1. Let L,M € L,,z,y €V, and v € C'. Then
(1) [L] = [M]| < [L+ M] < [L] + [M] (|[z] = [y]| < [z +y] < [2] + [¥]); [3]
(2) [LM] < [L)[M] ([Mz] < [M][z]); [3]
(3) [yM] = |y|[M] ([ya] = [7][=]); (3]
(4) p(M) < p([M]).



