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Abstract
This paper deals with #H-stability of Runge-Kutta methods with variable stepsize for
the system of pantograph equations. It is shown that both Runge-Kutta methods with
nonsingular matrix coefficient A and stiffly accurate Runge-Kutta methods are H-stable if
and only if the modulus of stability function at infinity is less than 1.
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1. Introduction

In recent years, much research has been focused on theoretical and numerical solutions of
pantograph equations. These systems can be found in variety of scientific and engineering
fields such as analytic number theory, nonlinear dynamical systems, collection of current by the
pantograph of an electric locomotive and so on, which have a comprehensive list in [7].

As far as we know the delay differential equations can be classified into two cases according
to time lag, one is those with finite time lags, and the other is those with infinite time lags.
There are remarkable differences, both analytically and numerically, between these two classes.
Theoretical study of the second class of equations can be found in [7]. The numerical methods
for this class have been studied by [2], in which the grid is uniform. However, this kind of
equation has unbounded time lags, it is usually difficult to investigate numerically the long
time dynamical behavior of exact solution due to limited computer memory as shown in [10].
There are two kinds of ways to avoid the storage problem. One is to transform the equation
into an equation with constant time lag and variable coefficients as shown in [9] and apply
a numerical method with constant stepsize h = % to it. As a matter of fact, it seems
like applying the numerical method with a grid which is not uniform, ¢, = ¢~ = and variable
stepsizes h,, = q*ﬁ(q’% — 1). Another way is applying a numerical method with variable
stepsizes to the equation directly, which are considered in [1,10]. The nonconstant stepsize
strategy is considered in [1], which is a special case of that introduced by Liu [10].

In this paper, we focus on the H-stability of Runge-Kutta methods with variable stepsize
applied to the system of pantograph equations. Some conclusions about the asymptotical sta-
bility of analytical solutions to the system are recalled. Furthermore, variable stepsize scheme
is given. Finally, Runge-Kutta methods with nonsingular matrix coefficient A and stiffly ac-
curate Runge-Kutta methods are applied to this system, respectively. The same sufficient and
necessary condition such that the methods are H-stable is presented.

2. Runge-Kutta Method with Variable Stepsize
In this paper, we consider the two-dimensional pantograph equations:

@(t) = Nz(t) + my(at),
{ y'(t) = Xoy(t) + pax(gat), t>0, (2.1)
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where A1, Ao, p1,p2 € C, 0 < g2 < ¢ < 1 with the initial conditions z(0) = zg, y(0) = yo.
The existence and uniqueness of solutions to the system (2.1) has been studied by [7]. It is
demonstrated in our another recent paper [11] that the solutions tend to zero (algebraically) if

|/1,1| < —RAq, |/L2| < —=RX> and X\ <0, R <O, (22)

where RA is the real part of A.

Definition 2.1. System (2.1) is called asymptotically stable if, for any q1,q> € (0,1) and any
initial values, the solutions xz(t),y(t) of this system tend to zero as t approaches infinity.

Thus the analytical stability region can be defined as S={(\1, A2, p1, 2) € C (A1, A2, i1, p2)
satisfies condition (2.2)}.

In the next two sections, we focus our attention on the numerically asymptotical stability
of Runge-Kutta method. Now we recall the method presented in [3] and the variable stepsize
schemes introduced in [11].

For the general pantograph equation:

2'(t) = f(t,2(t), 2(qt)),

where 0 < ¢ < 1.
The Runge-Kutta method, presented by [3], gives out the recurrence relation:

s
Zn+l = Zn + hn+1 E bzf(tn + cihn—i-la Zn,ia Zh(tn + cihn—i-l))a

=t (2.3)
Zn,i =2zn+ hn+1 E aijf(tn + thn_H, ij, Zh(tn + thn_H)),

Jj=1

where (4, b, c) denotes Runge-Kutta method, with matrix A = (a;;)sxs, vectors b = (b1, bs, ...,
bs)T, ¢ = (c1,¢2,...,¢5)T. And Z,, ;, 2"(t, + cihns1) can be interpreted as the approximation
to z(tyn + cihpy1) and z(q(tn + cihnt1)) respectively, for i =1,...,s.

Here, z"(t) is defined by the piecewise linear interpolation for ¢ > 0, i.e.,

t—1t; ti —t
2M(t) = "2 J z
ti—t 0t —t

i t; <t <tj.

Here, variable stepsize introduced in [11] is recalled.
For simplicity, without loss of generality, we assume that to = 1 and the numerical solution

is available till some point 5 > 0.

Let T; = %toz %aTH-l = ql%t(): #,wherel:O,l,Q,....

If we are interested in the values of z(t) at points t(1),+(2) .. t(m=1D with t() < +(2) <
... < tt™=1 then there must exist integers ki, ks,. .., ky_1 such that ¢* - () € [Ty, Ty), for
i=1,2,...,m—1and q € (0,1).

We define the grid points and variable stepsizes as follows,

to=To, tm=T1, t=q"t?

and
tkm+i = qikti; thrl = tn+1 - tn;
fork=1,2,3,...andi=1,2,...,m — 1.



