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Abstract
The initial-boundary value problem of Burgers equation is considered. A prediction-
correction Legendre collocation scheme is presented, which is easy to be performed. Its
numerical solution possesses the accuracy of second-order in time and higher order in
space. Numerical results are reported, which show the high accuracy of this approach. The
techniques used in this paper are also applicable to other nonlinear evolutionary problems.
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1. Introduction

Since spectral methods possess the accuracy of “infinite” order, they have been widely
applied to computational fluid dynamics, e.g., see [1-3]. As we know, the Burgers equation
plays an important role in fluid dynamics. Maday and Quarteroni [4] studied Legendre and
Chebyshev spectral approximations to the steady problem. Recently Bialecki and Karageorghis
[10] considered Legendre collocation method and He Li-ping and Sun Shun-kai [11] provided a
fast direct Legendre collocation algorithm for linear elliptic problems. Ma He-ping and Guo Ben-
yu [6] developed Chebyshev spectral methods for unsteady problem. In some existing work, the
temporal discretizations for nonlinear evolutionary problems is of the first order, and so limits
the merit of spectral approximations in space, e.g., see [7]. To remedy this trouble, a prediction-
correction Legendre spectral scheme was proposed in [8,9], which produces precise numerical
results, in which the linear leading terms are approximated implicitely and the nonlinear terms
are approximated explicitely at each step. Thus we can solve it explicitely by using the algorithm
in [11]. However, how to analyze the high accuracy for such an approach is still an open problem.
Indeed, so far, there has been no result on error estimate of prediction-correction operator
Legendre collocation method. Since we can not derive an explicit relationship between the
numerical solution and its predicted one, and so the analysis is very difficult.

In this paper, we take the unsteady Burgers equation as an example to show how to construct
a reasonable Legendre spectral collocation approximation using prediction-correction operator
in time and how to analyze the errors. Let T > 0, A = (—1,1), 0A = {—1,1} and p > 0 be the
kinetic viscosity. f(z) and wuo describe the source term and the initial state. Then the unsteady
Burgers equation is of the form

Ou Pu 10 , .
E—u@+§%u =f, in AX(O>T]7
u=0, on 9A x (0,77,
u(m,o) :UO(CU), in AU@A

* Received December 8, 2002; final revised July 23, 2003.
1) Supported by the Natural Science Foundation of China(10071049).

(1.1)




754 L.P. HE AND S.K. SUN

In Section 2, we construct the scheme and present the convergence. In Section 3, we present
the numerical results which show the high accuracy of this method. We list some lemmas in
Section 4 and prove the accuracy of second-order in time and high order in space in the final
section. The technique provided in this paper are also applicable to other nonlinear evolutionary
problems.

2. The Prediction-correction Legendre Collocation Scheme

Throughout the paper we use Sobolev spaces H"(A) and Hj(A). For simplicity, let L?(A) =
HO(A). Their definitions and properties can be found in [12]. The inner product, the semi-norm
and the norm of H"(A), r > 0 are denoted by (-,-),, | - |,., || - ||,. respectively. If r = 0, then the
index r is omitted. We recall that the usual semi-norm | - |, is equivalent to the norm || - ||, in
Hg(A). Further let H™"(A) be the dual space of Hg(A), and <, >p g gry be the duality
parting between H~"(A) and Hf(A). Define the bilinear form A(-,-) : HY(A) x H'(A) — R
and the trilinear form B(-,-,-) : L*(A) x L*(A) x H*(A) — R as follows

Alwv) = (2—;%» Vu, ve H'(A), o)
2.1
Blu,v,w) = —§(uv,g—“;’), Vu,v € LY(A), we H'(A).

So the weak formulation of (1.1) is to find a function v € L*(0,T; H3(A)) (N L>°(0,T, L*(A))
such that

ou
{ (Eav) + 1A (u,v) + B(u,u,v) = < f,0 > g1y, Yo € Hy(A). (2.2)

u(z,0) = uo(x).

It can be proved that if f € L?>(0,T; H=*(A)) and ug € L?(A), then (2.2) has a unique solution.
Let Pn(A) be the set of all algebraic polynomials of degree at most N and Py(A) =
Pn(A) ﬂ Hj(A). We define the orthogonal projection operator Py, : Hi(A) — PY(A) such
that
A(u — Pyu,vn) =0, Yoy € PY(A).

Also, we shall use the orthogonal projection operator Py : L?(A) — Py (A) defined as
(u — PNU,’UN) =0, Yoy € PN(A)

Denote by {:lcj}j:01 ..y and {wj}j:01 ..y the nodes and weights of the Gauss-Lobatto-
Legendre quadratuare formula on A=[-1,1]. Let Iy : C(A) — Py(A) be the interpolation
operator on {z; }j:0 1. n- It is obvious that

INU’(m]):U’(m])’ .]:07177N
The discrete inner product and norm are defined as

N

(o) = 3wl | u lly = ()3

Also, we shall use the norm

N
1
O lulzy) |"wj)a, 1<q< oo,
=0

omax | u(w;) |, q = 0.
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