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Abstract

By following the geometric point of view in mechanics, a novel expression of the com-
bined hybrid method for plate bending problems is introduced to clarify its intrinsic mech-
anism of enhancing coarse-mesh accuracy of conforming or nonconforming plate elements.
By adjusting the combination parameter α ∈ (0, 1) and adopting appropriate bending
moments modes, reduction of energy error for the discretized displacement model leads
to enhanced numerical accuracy. As an application, improvement of Adini’s rectangle is
discussed. Numerical experiments show that the combined hybrid counterpart of Adini’s
element is capable of attaining high accuracy at coarse meshes.
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1. Introduction

The combined hybrid finite element method [6,7,8,9] is capable of remarkably enhancing
coarse-mesh accuracy of conventional lower order elements for linear elasticity problems. The
4-node plane quadrilateral CH(0-1) proposed in [9] is a successful example.

By following the geometric point of view in mechanics, a novel expression of the combined
hybrid method was introduced in [10] to clarify its intrinsic mechanism of enhancing coarse-
mesh accuracy and stability of lower order displacement schemes for linear elasticity problems.
For a fixed coarse mesh and a given stress mode, e.g. the piecewise constant stress mode, one
can adjust the energy of the finite element model such that the energy error reduces to zero by
optimizing the combined parameter α and by adding energy compatible bubble displacements
to the given conforming displacements. It was shown by numerical experiments that the smaller
the energy error is, the higher numerical accuracy will be, and that combined hybrid schemes
without energy error are of high accuracy at coarse meshes. This accuracy criterion of schemes
at coarse meshes is different from the gradual convergence of the h−version and the p−version,
i.e. it does not require the mesh size h being smaller or the degree p of elements being bigger
for the combined hybrid method to achieve higher accuracy.

In the reference [11], the combined hybrid finite element method was applied to 4th-order
plate bending problems. It was shown that the resultant schemes are stabilized, i.e., the conver-
gence of the schemes is independent of inf-sup conditions and any other patch test. Then the
deflection interpolant and the bending moments approximation can be chosen independently,
which provides possibility of optimizing bending moments modes so as to obtain accurate plate
elements.

Based on [11], the present paper is devoted to a further analysis of the mechanism of
enhancing coarse-mesh accuracy of conventional plate elements of the combined hybrid method.
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By adopting rational bending moments modes and adjusting the combination parameter α ∈
(0, 1), energy error of the discretized scheme can be reduced, and then an enhanced numerical
accuracy at coarse meshes can be acquired. As an application, improvement of Adini’s rectangle
is discussed and numerical experiments show that the combined hybrid counterpart of Adini’s
element is capable of attaining high coarse-mesh accuracy.

In what follows the letter C will represent a constant which is independent of the mesh size
h = max

K
{hK} and may be different at its each occurrence.

2. Combined Hybrid Variational Principle

Considering the following plate bending problem:
⎧⎨
⎩

divdivσ = f, in Ω,
σ = m(D2u), in Ω,
u = ∇u · n = 0, on Γ = ∂Ω.

(2.1)

where Ω ⊂ �2 is a bounded open set, u represents vertical deflection, σ the bending moments,
and n the outer normal unit vector along Γ. The operators divdiv,D2 and m are defined
respectively as follows:

divdivτ = ∂11τ11 + 2∂12τ12 + ∂22τ22,

D2v =
(
∂11v ∂12v
∂12v ∂22v

)
,

m(τ) =
(
τ11 + ντ22 (1 − ν)τ12
(1 − ν)τ12 ντ11 + τ22

)

for any symmetric tensor τ = (τij), i, j = 1, 2, and ν ∈ (0, 0.5) denotes the Poisson’s coefficient,
∂ij = ∂2

∂xi∂xj
, i, j = 1, 2.

As shown in the reference [11], the combined hybrid variational principle equivalent to the
problem (2.1) reads as:

inf
(v,vc)∈U×Uc

sup
τ∈V

{ 1−α
2 d(v, v) − f(v) − b1(τ, v − vc) + α[b2(τ, v) − 1

2a(τ, τ)]} (2.2)

where

U := {v ∈
∏

K∈Th

H2(K);u = ∇u · n = 0, on Γ},

V :=
∏

K∈Th

H(divdiv;K) =
∏

K∈Th

{τ ∈ (L2(K))4s;divdivτ ∈ L2(K)}

and

Uc := H2
0 (Ω)/

∏
K∈Th

H2
0 (K)

are respectively the deflection space, the symmetric bending moments vector space and the
interelemental boundary deflection space, Th = {K} denotes a regular subdivision of Ω, with
mesh diameter hK for any K ∈ Th, (L2(K))4s the space of square integrable 2 × 2 symmetric
tensors, and


