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Abstract

A derivative patch interpolating recovery technique is analyzed for the finite element ap-
proximation to the second order elliptic boundary value problems in two dimensional case.
It is shown that the convergence rate of the recovered gradient admits superc onvergence
on the recovered subdomain, and is two order higher than the optimal global convergence
rate (ultracovergence) at an internal node point when even order finite element spaces and
local uniform meshes are used.
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1. Introduction

Finite element superconvergence property has long attracted considerable attentions since
its practical importance in enhancing the accuracy of finite element calculation and in adaptive
computing via a posteriori error estimate. In this field affluent research results have been
achieved. For some complete literature on superconvergence, the reader is referred to Wahlbin’s
book [1], Chen and Huang’s book [2], and a recent conference proceeding edited by Krizek et al.
[3]. In article [4,5], Lin Qun et al. proposed a new type of interpolation operator into the finite
element spaces, that is the interpolation operator of projection type, and remarked that it will
approximate the finite element solutions much better than the usual Lagrange interpolation.
Thus, the interpolation operator of projection type provides a new powerful means in the
research of finite element superconvergence, and we will use it as main analysis means in this
paper.

In a previous work[6], the ultraconvergence (i.e., two order higher than the optimal global
convergence rate ) of the derivative patch interpolating recovery technique was analyzed for
a class of two-point boundary value problems. The current work is devoted to the supercon-
vergence and ultraconvergence properties of the derivative interpolating recovery technique for
finite element approximation to the elliptic equation Au = f on a rectangular domain with the
general partial differential operator of second order
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and A = —A + agl when ultraconvergence is concerned. In this article, we will assume that the
rectangular partition mesh is regular for general case, or quasi-regular when superconvergence
is considered. Moreover, when we analysis the ultraconvergence at an interior nodal point
po, we will also assume that the mesh is local uniform, that is the four elements which share
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the common interior nodal point py are uniform. In general, the solution of the second order
elliptic boundary value problems on a rectangular domain may have corner singularity, and
consequently, the finite element approximation may suffer from the ”pollution effect” which
will result in the failure of the recovery procedure. There have been many techniques to treat
the pollution effect caused by domain singularity, for example, the local mesh refinement. In
order to concentrate on the local recovery method, in this paper, we assume that the solution
is smooth enough on domain 2 for our purpose, otherwise some local analysis methods should
be used[4,7].

Recently, many research works focus on the so-called Z — Z derivative patch recovery
technique[8-11], and this technique is considered to be one of the most effectiveness techniques
in the research of asymptotically exact a posteriori error estimates[12]. This technique uses
the least square method to fit the first order derivatives of finite element solution and results
in superconvergence. The ultraconvergence property of Z — Z technique has been analyzed
by Zhang[13] for the Laplace equation in the two dimensional setting. Comparing with the
Z — Z technique, our recovery method is more simple and easier to implement, and possesses
the explicit expression.

In this paper, we shall use notation Hi and W, to represent the usual Sobolev spaces on
domain €2 with norm and seminorm || - ||, and | - [, on W)", respectively, and use letter C
to denote a generic constant.

The plan of this paper is as follows: In Section 2 we introduce the interpolation operator
of projection type and discuss its approximation properties. In Section 3 the derivative patch
interpolating recovery operator is defined and its super-approximation and ultra-approximation
properties are analyzed. Section 4 is devoted to the superconvergence and ultraconvergence
properties for the finite element approximation to the second order elliptic boundary value
problems.

2. Interpolation Operator of Projection Type and Its
Super-approximation Properties

Let element e = ey X e = (¢ —he, Te +he) X (e —Tie, ye +1ie),  {L;(x)}52, and {L; (4)}32,
be the normalized orthogonal Legendre polynomial systems on Ly (e;) and Lo(es), respectively.
Set
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wol@) =0 ) =1, wjsa (z) = / L(@)de, Bya1 (y) = / Li(y)dy, j >0
Te—he Ye—he

It is well known that polynomials wyy1(z) and Lg(z) (k > 1) have k 4+ 1 and k zero points on
€1 and eg, respectively, and these zero points are symmetrically distributed with respect to the
middle point z.. Denote the two kinds of zero point set by N}go) = {g](-o) }and Ny = {yg,},

respectively, and we call N ,50) the Lobatto point set and N the Gauss point set. Moreover, we
know that these polynomials also possess the following symmetry and antisymmetry
waj(Te + ) = waj(®e — ), waj_1(Te + ) = —waj_1(Te — T) (1)
ng(a:e + CE) = ng(a:e — ZE), L2j_1(a:e + ZU) = —LQj_1(£Ee — 37) (2)

The completely parallel conclusions hold for the polynomials w1 (y) and Lk (y) on element
€2 = (ye - heaye + he)-

Below we denote the Lobatto and Gauss points on element e = e; X ez by {GE?) = (gEO), g
;0))} and {Gij = (9i, 5]) }, respectively, and also denote the Gauss lines by G, ; = {(:v,gj ;
r€ey, 9;€ENL} and Giy = {(9:,9); 9i € Nk, y € €2 }.



