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Abstract

In this paper, a novel class of exponential Fourier collocation methods (EFCMs) is

presented for solving systems of first-order ordinary differential equations. These so-called

exponential Fourier collocation methods are based on the variation-of-constants formula,

incorporating a local Fourier expansion of the underlying problem with collocation meth-

ods. We discuss in detail the connections of EFCMs with trigonometric Fourier colloca-

tion methods (TFCMs), the well-known Hamiltonian Boundary Value Methods (HBVMs),

Gauss methods and Radau IIA methods. It turns out that the novel EFCMs are an es-

sential extension of these existing methods. We also analyse the accuracy in preserving

the quadratic invariants and the Hamiltonian energy when the underlying system is a

Hamiltonian system. Other properties of EFCMs including the order of approximations

and the convergence of fixed-point iterations are investigated as well. The analysis given

in this paper proves further that EFCMs can achieve arbitrarily high order in a routine

manner which allows us to construct higher-order methods for solving systems of first-

order ordinary differential equations conveniently. We also derive a practical fourth-order

EFCM denoted by EFCM(2,2) as an illustrative example. The numerical experiments

using EFCM(2,2) are implemented in comparison with an existing fourth-order HBVM,

an energy-preserving collocation method and a fourth-order exponential integrator in the

literature. The numerical results demonstrate the remarkable efficiency and robustness of

the novel EFCM(2,2).
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1. Introduction

This paper is devoted to analysing and designing novel and efficient numerical integrators

for solving the following first-order initial value problems

u′(t) +Au(t) = g(t, u(t)), u(0) = u0, t ∈ [0, tend], (1.1)

where g : R × Rd → Rd is an analytic function, A is assumed to be a linear operator on

a Banach space X with a norm ‖·‖, and (−A) is the infinitesimal generator of a strongly

continuous semigroup e−tA on X (see, e.g. [27]). This assumption of A means that there exist

two constants C and ω satisfying

∥∥e−tA
∥∥
X←X

≤ Ceωt, t ≥ 0. (1.2)

An analysis about this result can be found in [27]. It is noted that if X is chosen as X = Rd

or X = C
d, then the linear operator A can be expressed by a d × d matrix. Accordingly in

this case, e−tA is exactly the matrix exponential function. It also can be observed that the

condition (1.2) holds with ω = 0 provided the field of values of A is contained in the right

complex half-plane. In the special and important case where A is skew-Hermitian or Hermitian

positive semidefinite, we have C = 1 and ω = 0 in the Euclidean norm, independently of the

dimension d. If A originates from a spatial discretisation of a partial differential equation, then

the assumption of A leads to temporal convergence results that are independent of the spatial

mesh.

It is known that the exact solution of (1.1) can be represented by the variation-of-constants

formula

u(t) = e−tAu0 +

∫ t

0

e−(t−τ)Ag(τ, u(τ))dτ. (1.3)

For oscillatory problems, the exponential subsumes the full information on linear oscillations.

This class of problems (1.1) frequently rises in a wide variety of applications including engineer-

ing, mechanics, quantum physics, circuit simulations, flexible body dynamics and other applied

sciences (see, e.g. [10,16,24,27,39,41,44,47]). Parabolic partial differential equations with their

spatial discretisations and highly oscillatory problems are two typical examples of the system

(1.1) (see, e.g. [30–34, 42]). Linearizing stiff systems u′(t) = F (t, u(t)) also yields examples of

the form (1.1) (see, e.g. [15, 25, 28]).

Based on the variation-of-constants formula (1.3), the numerical scheme for (1.1) is usually

constructed by incorporating the exact propagator of (1.1) in an appropriate way. For example,

interpolating the nonlinearity at the known value g(0, u0) yields the exponential Euler approx-

imation for (1.3). Approximating the functions arising by rational approximations leads to

implicit or semi-implicit Runge–Kutta methods, Rosenbrock methods or W-schemes. Recently,

the construction, analysis, implementation and application of exponential integrators have been

studied by many researchers, and we refer the reader to [3, 11–13, 16, 37, 45], for example. Ex-

ponential integrators make explicit use of the quantity Au of (1.1), and a systematic survey of

exponential integrators is referred to [27].

Based on Lagrange interpolation polynomials, exponential Runge-Kutta methods of collo-

cation type are constructed and their convergence properties are analysed in [26]. In [40], the

authors developed and researched a novel type of trigonometric Fourier collocation methods

(TFCMs) for second-order oscillatory differential equations q′′(t) + Mq(t) = f(q(t)) with a

principal frequency matrix M ∈ Rd×d. These new trigonometric Fourier collocation methods


