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Abstract. In this paper we consider new perturbation bounds analysis of a kind of gen-

eralized saddle point systems. We provide perturbation upper bounds for the solutions of

generalized saddle point systems, which extend the corresponding results in [W.-W. Xu,

W. Li, New perturbation analysis for generalized saddle point systems, Calcolo., 46(2009),

pp. 25-36] to more general cases.
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1. Introduction

The saddle point system appears in scientific and engineering applications, such as,

aeronautics, the mixed finite element solution of the Navier-Stokes, the Maxwell equations,

electromagnetics and data fitting et. al. Numerical methods and perturbation bounds anal-

ysis for solving the saddle point system studied in some literatures. For details, please

see [2-15] and the references therein. Recently, Xu et. al. in [1] considered perturbation

bounds of the following generalized saddle point systems:
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where A∈ Rm×m, B ∈ Rn×m, and C ∈ Rn×n, n≤ m (possibly n≪ m). This kind of system

arises in many application problems, e.g., see [1]. As we know, a number of literatures deal

with the solvers of the saddle point problem (1.1) with C 6= 0. Due to practical applica-

tions, perturbation analysis of the saddle point problem (1.1) should be discussed and the

perturbation bounds and condition numbers for the system (1.1) are derived.
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In this paper we will extend System (1.1) to the more generalized saddle point system

and consider perturbation upper bound for the solutions of this system:
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where A∈ Rm×m, B ∈ Rn×m, D ∈ Rm×n and C ∈ Rn×n, x ∈ Rm, y ∈ Rn, n≤ m (possibly

n≪ m). Let A be the coefficient matrix of (1.2) and assume that A is nonsingular. The

non-singularity conditions of A can be referred in Lemma 2.1 of [15]. Obviously, when

D = BT in (1.2), System (1.2) reduces to System (1.1). We note that the perturbation

bounds analysis for the solutions x and y of the system (1.2) have not discussed so far. By

this motivation, we will consider this problem in the paper.

Let the perturbed system of (1.2) be as follows:
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Throughout the paper, we always assume that

‖∆A‖F ≤ εD1, ‖∆B‖F ≤ εD2, ‖∆C‖F ≤ εD3,

‖∆D‖F ≤ εσ1, ‖∆ f ‖2 ≤ εD4, ‖∆g‖2 ≤ εD5, (1.3)

and let
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Here ‖ · ‖F denotes the Frobinus-norm.

The rest of the paper is organized as follows. In Section 2 we give some definitions,

notations and useful lemmas to deduce the main results. In Section 3 we give perturbation

bounds for the solutions of a kind of generalized saddle point systems. In Section 4 we give

numerical examples to illustrate our results.

2. Preliminaries

We briefly give some useful lemmas in order to deduce our main results.

Lemma 2.1. IfA is nonsingular, then

i)

�

∆x

∆y

�

=H θ +A −1(P,Q)

�

∆x

∆y

�

,

ii)

�

∆x

∆y

�

= H̄ θ̄ +A −1
∆A

�

∆x

∆y

�

,


