# New Perturbation Bounds Analysis of a Kind of Generalized Saddle Point Systems 

Wei-Wei Xu ${ }^{1, *}$, Mao-Mao Liu ${ }^{2}$, Lei Zhu ${ }^{3}$ and Hong-Fu Zuo ${ }^{4}$<br>${ }^{1}$ College of Science, Hohai University, Nanjing 210098, P.R. China.<br>${ }^{2}$ School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, P.R. China.<br>${ }^{3}$ College of Engineering, Nanjing Agricultural University, Nanjing 210031, P.R. China.<br>${ }^{4}$ College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China.

Received 10 June 2016; Accepted (in revised version) 3 December 2016.


#### Abstract

In this paper we consider new perturbation bounds analysis of a kind of generalized saddle point systems. We provide perturbation upper bounds for the solutions of generalized saddle point systems, which extend the corresponding results in [W.-W. Xu, W. Li, New perturbation analysis for generalized saddle point systems, Calcolo., 46(2009), pp. 25-36] to more general cases.


AMS subject classifications: 65F35, 65G05
Key words: Generalized saddle point system, perturbation bounds analysis.

## 1. Introduction

The saddle point system appears in scientific and engineering applications, such as, aeronautics, the mixed finite element solution of the Navier-Stokes, the Maxwell equations, electromagnetics and data fitting et. al. Numerical methods and perturbation bounds analysis for solving the saddle point system studied in some literatures. For details, please see [2-15] and the references therein. Recently, Xu et. al. in [1] considered perturbation bounds of the following generalized saddle point systems:

$$
\left(\begin{array}{cc}
A & B^{T}  \tag{1.1}\\
B & C
\end{array}\right)\binom{x}{y}=\binom{f}{g}
$$

where $A \in \mathscr{R}^{m \times m}, B \in \mathscr{R}^{n \times m}$, and $C \in \mathscr{R}^{n \times n}, n \leq m$ (possibly $n \ll m$ ). This kind of system arises in many application problems, e.g., see [1]. As we know, a number of literatures deal with the solvers of the saddle point problem (1.1) with $C \neq 0$. Due to practical applications, perturbation analysis of the saddle point problem (1.1) should be discussed and the perturbation bounds and condition numbers for the system (1.1) are derived.
*Corresponding author. Email address: wwx19840904@sina.com (W.-W. Xu)

In this paper we will extend System (1.1) to the more generalized saddle point system and consider perturbation upper bound for the solutions of this system:

$$
\left(\begin{array}{ll}
A & D  \tag{1.2}\\
B & C
\end{array}\right)\binom{x}{y}=\binom{f}{g}
$$

where $A \in \mathscr{R}^{m \times m}, B \in \mathscr{R}^{n \times m}, D \in \mathscr{R}^{m \times n}$ and $C \in \mathscr{R}^{n \times n}, x \in \mathscr{R}^{m}, y \in \mathscr{R}^{n}, n \leq m$ (possibly $n \ll m$ ). Let $\mathscr{A}$ be the coefficient matrix of (1.2) and assume that $\mathscr{A}$ is nonsingular. The non-singularity conditions of $\mathscr{A}$ can be referred in Lemma 2.1 of [15]. Obviously, when $D=B^{T}$ in (1.2), System (1.2) reduces to System (1.1). We note that the perturbation bounds analysis for the solutions $x$ and $y$ of the system (1.2) have not discussed so far. By this motivation, we will consider this problem in the paper.

Let the perturbed system of (1.2) be as follows:

$$
(\mathscr{A}+\Delta \mathscr{A})\binom{x+\Delta x}{y+\Delta y}=\left(\begin{array}{ll}
A+\Delta A & D+\Delta D \\
B+\Delta B & C+\Delta C
\end{array}\right)\binom{x+\Delta x}{y+\Delta y}=\binom{f+\Delta f}{g+\Delta g} .
$$

Throughout the paper, we always assume that

$$
\begin{array}{lll}
\|\Delta A\|_{F} \leq \epsilon \mathscr{D}_{1}, & \|\Delta B\|_{F} \leq \epsilon \mathscr{D}_{2}, & \|\Delta C\|_{F} \leq \epsilon \mathscr{D}_{3}, \\
\|\Delta D\|_{F} \leq \epsilon \sigma_{1}, & \|\Delta f\|_{2} \leq \epsilon \mathscr{D}_{4}, & \|\Delta g\|_{2} \leq \epsilon \mathscr{D}_{5}, \tag{1.3}
\end{array}
$$

and let

$$
\begin{equation*}
\delta=\left(\delta_{1}, \delta_{2}, \delta_{3}\right)^{T}, \quad \hat{\delta}=\left(\hat{\delta}_{1}, \hat{\delta}_{2}\right)^{T}, \tag{1.4}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\epsilon>0, & \delta_{1}=\sqrt{\mathscr{D}_{1}^{2}+\mathscr{D}_{2}^{2}}, \quad \delta_{2}=\sqrt{\sigma_{1}^{2}+\mathscr{D}_{3}^{2}}, \quad \delta_{3}=\sqrt{\mathscr{D}_{4}^{2}+\mathscr{D}_{5}^{2}}, \\
& \hat{\delta}_{1}=\sqrt{\mathscr{D}_{1}^{2}+\mathscr{D}_{2}^{2}+\sigma_{1}^{2}+\mathscr{D}_{3}^{2}}, \quad \hat{\delta}_{2}=\sqrt{\mathscr{D}_{4}^{2}+\mathscr{D}_{5}^{2}} .
\end{array}
$$

Here $\|\cdot\|_{F}$ denotes the Frobinus-norm.
The rest of the paper is organized as follows. In Section 2 we give some definitions, notations and useful lemmas to deduce the main results. In Section 3 we give perturbation bounds for the solutions of a kind of generalized saddle point systems. In Section 4 we give numerical examples to illustrate our results.

## 2. Preliminaries

We briefly give some useful lemmas in order to deduce our main results.
Lemma 2.1. If $\mathscr{A}$ is nonsingular, then

$$
\begin{aligned}
& \text { i) }\binom{\Delta x}{\Delta y}=\mathscr{H} \theta+\mathscr{A}^{-1}(P, Q)\binom{\Delta x}{\Delta y}, \\
& \text { ii) }\binom{\Delta x}{\Delta y}=\mathscr{\mathscr { H }} \bar{\theta}+\mathscr{A}^{-1} \Delta \mathscr{A}\binom{\Delta x}{\Delta y},
\end{aligned}
$$

