General Solutions for a Class of Inverse Quadratic Eigenvalue Problems

Xiaoqin Tan and Li Wang*
Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China.
Received 10 April 2013; Accepted (in revised version) 2 October 2013
Available online 24 February 2014

Abstract

Based on various matrix decompositions, we compare different techniques for solving the inverse quadratic eigenvalue problem, where $n \times n$ real symmetric matrices M, C and K are constructed so that the quadratic pencil $Q(\lambda)=\lambda^{2} M+\lambda C+K$ yields good approximations for the given k eigenpairs. We discuss the case where M is positive definite for $1 \leq k \leq n$, and a general solution to this problem for $n+1 \leq k \leq 2 n$. The efficiency of our methods is illustrated by some numerical experiments.

AMS subject classifications: 65F18
Key words: Quadratic eigenvalue problem, inverse quadratic eigenvalue problem, partially prescribed spectral information.

1. Introduction

For $n \times n$ complex matrices M, C and K, the quadratic eigenvalue problem (QEP) involves finding the eigenpairs (λ, x) such that $Q(\lambda) x=0$, where

$$
\begin{equation*}
Q(\lambda)=Q(\lambda ; M, C, K)=\lambda^{2} M+\lambda C+K \tag{1.1}
\end{equation*}
$$

is a so-called quadratic pencil defined by M, C and K. The scalars λ and the corresponding nonzero vectors x are the eigenvalues and eigenvectors of the pencil, respectively. It is known that the QEP has $2 n$ finite eigenvalues over the complex field, provided that the leading matrix coefficient M is nonsingular. The "direct" problem is of course to find the eigenvalues and eigenvectors when the coefficient matrices M, C and K are given (cf. [5] and references therein), while the inverse quadratic eigenvalue problem (IQEP) is to determine the matrix coefficients M, C and K from a prescribed set of eigenvalues and eigenvectors (cf. [16] and references therein).

[^0]The IQEP has received much attention because of the wide variety of its applications including structural design [9], control design for second-order systems [6, 16], finite element model updating for damped or gyroscopic systems [7], system identification [1] and inverse problems for damped vibration systems [12]. Some general reviews and extensive bibliographies in this regard can be found in Refs. [3] and [4].

The formulation of an IQEP depends upon the type of eigen-information available, the conditions imposed upon the matrix coefficients, and the techniques used to decompose the matrix constituted by the given eigenvectors. The IQEP studied by Ram \& Elhay [17] is for symmetric tridiagonal coefficients where instead of prescribed eigenpairs, two sets of eigenvalues are given. Based on the spectral theory of matrix polynomials, Lancaster et al. $[8,11,13]$ considered the IQEP with: (1) Hermitian matrices M, C and K, (2) real symmetric matrices M, C and K, and (3) real symmetric positive definite or semi-definite matrices M, C and K, so that the quadratic pencil $Q(\lambda)$ has complete information on the eigenvalues and eigenvectors. We deal with the inverse problem with k given eigenpairs, where M is required to be real symmetric positive definite, and C and K are $n \times n$ real symmetric matrices. For $1 \leq k \leq n$, Yuan et al. [18] gave a detailed discussion involving QR decomposition, while for $n+1 \leq k \leq 2 n$ Kuo et al. [10] studied the general solution to this problem with QR decomposition.

Our main concern is as follows: for a given eigen-information pair (Λ, X), find real symmetric matrices M, C and K where M is positive definite such that

$$
\begin{equation*}
M X \Lambda^{2}+C X \Lambda+K X=0 \tag{1.2}
\end{equation*}
$$

is satisfied. Our motivation is to find a more efficient method to solve this problem, and the techniques we investigate below are the Rank Revealing QR (RRQR), SVD and UTV factorizations where U and V are orthogonal matrices, while T is an upper-two-diagonal matrix.

Since M, C and K are in $\mathbb{R}^{n \times n}$, we can transform the given complex eigenpairs into real eigenpairs. To facilitate the discussion, let the real eigenpairs constitute the pair of matrices $(\Lambda, X) \in \mathbb{R}^{k \times k} \times \mathbb{R}^{n \times k}$ such that

$$
\begin{equation*}
\Lambda=\operatorname{diag}\left\{\lambda_{1}^{[2]}, \cdots, \lambda_{l}^{[2]}, \lambda_{2 l+1}, \cdots, \lambda_{k}\right\}, \tag{1.3}
\end{equation*}
$$

with

$$
\lambda_{j}^{[2]}=\left(\begin{array}{cc}
\alpha_{j} & \beta_{j} \tag{1.4}\\
-\beta_{j} & \alpha_{j}
\end{array}\right) \in \mathbb{R}^{2 \times 2}, \quad \beta_{j} \neq 0 \quad \text { for } j=1,2, \cdots, l
$$

and

$$
\begin{equation*}
X=\left\{x_{1 R}, x_{1 I}, \cdots, x_{l R}, x_{l I}, x_{2 l+1}, \cdots, x_{k}\right\}, \tag{1.5}
\end{equation*}
$$

where $x_{i R}$ and $x_{i I}$ denote the real and imaginary parts of the corresponding eigenvector, respectively. Then the original eigenpairs can be described by the matrices

$$
\tilde{\Lambda}=R^{H} \Lambda R=\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{2 l-1}, \lambda_{2 l}, \lambda_{2 l+1}, \cdots, \lambda_{k}\right\}
$$

[^0]: *Corresponding author. Email addresses: wlsha@163. com (L. Wang), wangli1@njnu. edu.cn (L. Wang)

