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Abstract. Nonlocal diffusion models involve integral equations that account for nonlo-

cal interactions and do not explicitly employ differential operators in the space variables.

Due to the nonlocality, they might look different from classical partial differential equa-

tion (PDE) models, but their local limit reduces to partial differential equations. The

effect of mesh element anisotropy, mesh refinement and kernel functions on the condi-

tioning of the stiffness matrix for a nonlocal diffusion model on 2D geometric domains is

considered, and the results compared with those obtained from typical local PDE mod-

els. Numerical experiments show that the condition number is bounded by cδ−2 (where

c is a constant) for an integrable kernel function, and is not affected by the choice of the

basis function. In contrast to local PDE models, mesh anisotropy and refinement affect

the condition number very little.
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1. Introductions

Nonlocal diffusion equations and nonlocal peridynamic models have received consider-

able attention in recent years. Peridynamic theory was developed by Silling [1]. Nonlocal

diffusion and peridynamic theory involve integral equations rather than differential equa-

tions to model cracked surfaces and deformations, and have also been extensively applied

elsewhere — e.g. to turbulence [2], porous flow [3], nanofibers [4, 5], and fracture and

damage modelling of membranes [4]. Refs. [6, 7] provide recent surveys of nonlocal dif-

fusion and peridynamic models, and their applications. It has been shown that a nonlocal

peridynamic model reduces to a classical local model (such as in elasticity theory) when

the length scale (horizon) goes to zero [8]. The effect of various kernel functions on the

nonlocal advection problem has been investigated for a 1D problem [9]. Researchers have

also studied finite difference and finite element discretisation of nonlocal diffusion and
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peridynamic models [10–13], including a posteriori error analysis and the connection be-

tween the horizon and the condition number in Ref. [10]. Condition number estimates and

upper bounds for the discretised linear system, and the effect of the horizon and mesh size

on the condition number for isotropic elements, have been investigated [14]. Interactions

between mesh geometry, mesh refinement and the condition number of the global stiff-

ness matrix for classical PDE have also been considered. Thus the connection between the

anisotropy of mesh elements and the condition number for elliptic PDE was investigated in

Ref. [15]; various mesh quality metrics, interpolation error and the condition number for

elliptic, parabolic and hyperbolic PDE were explored in Ref. [16]; and connections between

the mesh quality metric, preconditioner and the linear solver for elliptic PDE were studied

computationally in Refs. [17,18].

In this article, the Galerkin finite element method is used to discretise a linear nonlocal

diffusion system, in order to study the effect of the anisotropy of the mesh element (element

shape), mesh refinement (element size) and kernel functions on the condition number for

a nonlocal diffusion model on 2D geometric domains. There are various nonlocal models,

such as a bond-based model [1, 13] and a state-based model [19]. We consider a bond-

based nonlocal model that involves central forces between particles [1,13,20], and numer-

ically demonstrate the effect of an integrable kernel function on the condition number for

both piecewise linear and piecewise constant basis functions. Conditioning is important,

because it affects the accuracy of the solution and the convergence rate in solving the dis-

cretised linear system [15,16]. This article is the first to explore the connections between

anisotropy, mesh refinement and the condition number for 2D meshes with various kernel

functions for a scalar nonlocal diffusion model. This is computationally challenging for var-

ious reasons. First, two different quadrature rules are needed to approximate the double

integral terms on 2D geometric domains, to avoid the singularity of the denominator when

the condition number of the global stiffness matrix is computed. Second, it is desirable to

compute approximately the area of intersection between the horizon (δ) and the triangular

element when the quadrature rule is used. Finally, the number of intersections between the

horizon and the triangular element increases significantly as the level of mesh refinement

increases, and so is computationally expensive.

The conditioning of the stiffness matrix is investigated for both piecewise constant and

piecewise linear basis functions, assuming an integrable kernel function. In each case, the

effect of changing the anisotropy and mesh size (h) on the conditioning of the scalar non-

local diffusion model is examined. The analytical results show that the condition number

is bounded by cδ−2 (where c is a constant) when a finite integrable kernel function is em-

ployed [14]. For an integrable kernel function, it is shown numerically in each case that

the condition number is barely affected by the choice of basis function. The constant c

in the condition number bound (cδ−2) is computed for uniform triangular and rectangu-

lar meshes in 2D. For general elliptic PDE, it is well-known that the condition number is

proportional to h−2 when the mesh has the same anisotropy on uniform triangular and

rectangular meshes in 2D [16]. Mesh anisotropy also affects the condition number for gen-

eral elliptic PDE — e.g. if θ is the smallest angle in the right triangle, then the condition

number is proportional to sin−1(2θ) [15] such that the condition number sharply increases


