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Abstract. In a recent paper (Du and Ekaterinaris, 2016) optimization of dissipation
and dispersion errors was investigated. A Diagonally Implicit Runge-Kutta (DIRK)
scheme was developed by using the relative stability concept, i.e. the ratio of ab-
solute numerical stability function to analytical one. They indicated that their new
scheme has many similarities to one of the optimized Strong Stability Preserving (SSP)
schemes. They concluded that, for steady state simulations, time integration schemes
should have high dissipation and low dispersion. In this note, dissipation and disper-
sion errors for DIRK schemes are studied further. It is shown that relative stability is
not an appropriate criterion for numerical stability analyses. Moreover, within abso-
lute stability analysis, it is shown that there are two important concerns, accuracy and
stability limits. It is proved that both A-stability and SSP properties aim at minimizing
the dissipation and dispersion errors. While A-stability property attempts to increase
the stability limit for large time step sizes and by bounding the error propagations via
minimizing the numerical dispersion relation, SSP optimized method aims at increas-
ing the accuracy limits by minimizing the difference between analytical and numerical
dispersion relations. Hence, it can be concluded that A-stability property is necessary
for calculations under large time-step sizes and, more specifically, for calculation of
high diffusion terms. Furthermore, it is shown that the oscillatory behavior, reported
by Du and Ekaterinaris (2016), is due to Newton method and the tolerances they set
and it is not related to the employed temporal schemes.
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1 Introduction

Steady state solutions could be sought as the long-time mean solutions of the unsteady
problems (Du and Ekaterinaris, 2016). However, dissipation and dispersion errors are the
main obstacles to achieve long time-step sizes and accordingly to decrease the calculation
time.

Among different temporal integrator schemes, Runge-Kutta methods have attracted
attentions, as they are single-step methods and have free parameters which could lead
to optimization of dissipation and dispersion errors. Excessive research in the literature
has been made to control and bound dissipation and dispersion errors to increase the
range of stability and accuracy. Consequently, numerous stability properties have been
introduced including A-stability property. The reader is referred to ODEs books for more
details (e.g. Hairer and Wanner, 1996).

The Strong Stability Preserving (SSP) Runge-Kutta methods are well-known due to
their non-oscillatory behavior in shock and discontinuity problems. These methods were
designed as convex combinations of Forward Euler (FE) method within limited radius of
absolute monotonicity. This class of methods was further developed by Gottlieb and Shu
(1998). Then, Ketcheson (2009) developed optimal implicit SSP RungeKutta methods up
to order six with eleven stages.

The objective of this paper is to further investigate the stability analysis within study-
ing dissipation and dispersion errors, in order to discuss the conclusions of Du and Eka-
terinaris (2016) and to discuss their proposed DIRK scheme.

Du and Ekaterinaris (2016) indicated that this new scheme has many similarities with
the three-stage fourth order SSP optimized DIRK scheme. They also described their pro-
posed scheme, so called DIRK-D, as a more accurate model for low wavenumber com-
ponents than other schemes they employed. However, as will be discussed, in stability
analyses of temporal schemes, the main attention is on time step sizes. The wavenumber
is assumed as a fixed variable, which basically would be the highest one. It will be shown
that the source of instability, imposed by grid mesh, is due to high wavenumbers.

Relative stability analysis, i.e. the ratio of absolute numerical stability function to an-
alytical one, was introduced by Hairer and Wanner (1996) within the concept of Order
Star. Du and Ekaterinaris (2016) used relative stability function to design the optimized
three-stage fourth order DIRK scheme, DIRK-D, and to examine its performances. How-
ever, the Order Star is mainly useful in proving relation between stability and achievable
order of accuracy and this idea is not useful for judging the stability. Indeed, absolute
stability is the more practical one (Leveque, 2007).

In Section 2, the relative stability analysis is studied further in order to show that this
concept is not useful for optimization of the dissipation and dispersion errors. Mean-
while, as indicated by Leveque (2007) and shown in the present paper, this concept just
shows the order of accuracy and truncation error. Du and Ekaterinaris (2016) indicated
that, for advection-diffusion system, the amplification factor needs to include contribu-
tion of physical and numerical diffusion. In contrast, it will be shown that this contri-


