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Abstract. The modified ghost fluid method (MGFM), due to its reasonable treatment
for ghost fluid state, has been shown to be robust and efficient when applied to com-
pressible multi-medium flows. Other feasible definitions of the ghost fluid state, how-
ever, have yet to be systematically presented. By analyzing all possible wave structures
and relations for a multi-medium Riemann problem, we derive all the conditions to de-
fine the ghost fluid state. Under these conditions, the solution in the real fluid region
can be obtained exactly, regardless of the wave pattern in the ghost fluid region. Ac-
cording to the analysis herein, a practical ghost fluid method (PGFM) is proposed to
simulate compressible multi-medium flows. In contrast with the MGFM where three
degrees of freedom at the interface are required to define the ghost fluid state, only one
degree of freedom is required in this treatment. However, when these methods proved
correct in theory are used in computations for the multi-medium Riemann problem,
numerical errors at the material interface may be inevitable. We show that these errors
are mainly induced by the single-medium numerical scheme in essence, rather than
the ghost fluid method itself. Equipped with some density-correction techniques, the
PGFM is found to be able to suppress these unphysical solutions dramatically.
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1 Introduction

The dynamics of compressible multi-medium flows often give rise to challenging prob-
lems in both theory and numerical simulation. The change in equation of state (EOS) is
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known to cause numerical inaccuracies or oscillations near material interfaces. In order
to overcome this difficulty, various strategies have been pursued in the past two decades
with an even increasing interest [1–9]. Some methods treat materials that are separated
by distinct sharp interfaces by reformulating the problem using a mixture model [1–6].
An artificial EOS is usually introduced for mixture cells. This treatment, however, may
fail to capture discontinuous response and result in numerical instabilities, if a shock
is transmitted across an interface for instance. Comparatively speaking, an immiscible
model seems to be more reasonable in the presence of sharp interfaces. Researchers can
take all kinds of effective measures such as volume of fluid method [10] or more popular
level set technique [11] or front tracking technique [12] to deal with it. But the interfacial
state, especially when nonlinear wave interaction occurring at the interface, should be
faithfully simulated to suppress any undesired numerical oscillations.

The idea of ghost fluid method (GFM), originally suggested and developed by Glimm
et al. [13, 14], has provided us a simple and flexible way for handling multi-medium
flows with immiscible material interfaces. The GFM-based techniques [15–19] have been
improved upon and applied by many researchers to a range of problems. By specially
defining the ghost fluid state, the computation can be carried out as if in a single medium.
The numerical schemes for single-medium flow can be employed without any changes
and the methods are easily extended to multi-dimensions. These variants in GFMs differ
in the way in which the ghost fluid state is populated.

Fedkiw et al. proposed the original GFM (OGFM) [15] by using the local real fluid
velocity and pressure to define the corresponding ghost fluid state. Later, the gas-water
version GFM (GWGFM) [16], where the ghost fluid state is defined by employing the
velocity from the water and the pressure from the gas, was specially presented for cou-
pling non-stiff fluid (gas) and stiff fluid (water). Although the two GFMs are problem-
related and not suitable for some cases like high speed jet impacting [20], the simplicity
and the easy extension to multi-dimensions promote the development of these meth-
ods [6, 21–23]. In order to take into account the effects of wave interaction and material
properties, Liu et al. proposed the modified GFM (MGFM) [17] by carrying out character-
istic analysis on the waves arriving at the interface and solving the local Riemann prob-
lem. Following the idea of Riemann-problem-based technique, the interface-interaction
GFM (IGFM) [18] and the real GFM (RGFM) [19] have also been developed recently. The
Riemann-problem-based algorithm, discussed in this paper, is characterized by (approx-
imately) solving a multi-medium Riemann problem to define the ghost fluid state. This
differs from the OGFM and the GWGFM where the ghost fluid states are defined via
using the local flow state or extrapolating from the real fluid. These Riemann-problem-
based techniques have been shown to be robust and less problem-related and success-
fully applied to solve a multitude of problems involving strong shocks interacting with
gas-gas, gas-water interfaces and even fluid-structure coupling problems [17–20, 24–28].
Furthermore, it has been proved that the error estimate by the MGFM is “third-order
accurate” in the vicinity of the interface for a multi-medium Riemann problem [29, 30].

Besides the MGFM where the ghost fluid state is defined by using the interfacial state,


