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Abstract. In this paper, we study a new two-step iteration scheme of mixed type for
two total asymptotically nonexpansive self mappings and two total asymptotically
nonexpansive non-self mappings and establish some weak convergence theorems in
the framework of uniformly convex Banach spaces. Our results extend and generalize
several results from the current existing literature.
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1 Introduction and preliminaries

Let C be a nonempty subset of a real Banach space E and T : C→C a nonlinear mapping.
F(T) denotes the set of fixed points of the mapping T, that is, F(T) = {x ∈ C : Tx = x},
F=F(S1)∩F(S2)∩F(T1)∩F(T2) denotes the set of common fixed points of the mappings
S1, S2, T1 and T2 and N denotes the set of all positive integers.

Definition 1.1. A mapping T is said to be total asymptotically nonexpansive [1] if

‖Tn(x)−Tn(y)‖≤ ‖x−y‖+µnψ(‖x−y‖)+νn , (1.1)

for all x,y∈C and n∈N, where {µn} and {νn} are nonnegative real sequences such that
µn→0 and νn→0 as n→∞ and a strictly increasing continuous function ψ : [0,∞)→ [0,∞)
with ψ(0)=0.
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From the definition, we see that the class of total asymptotically nonexpansive map-
pings include the class of asymptotically nonexpansive mappings as a special case; see
also [4] for more details.

Remark 1.1. From the above definition, it is clear that each asymptotically nonexpansive
mapping is a total asymptotically nonexpansive mapping with νn = 0, µn = kn−1 for all
n≥1, ψ(t)= t, t≥0.

Definition 1.2. A subset C of a Banach space E is said to be a retract of E if there exists a
continuous mapping P : E→C (called a retraction) such that P(x)= x for all x∈C. If, in
addition P is nonexpansive, then P is said to be a nonexpansive retract of E.

If P : E→C is a retraction, then P2=P. A retract of a Hausdorff space must be a closed
subset. Every closed convex subset of a uniformly convex Banach space is a retract.

Definition 1.3. Let C be a nonempty closed convex subset of a Banach space E. A non-
self mapping T : C→E is said to be total asymptotically nonexpansive [18] if there exist
sequences {µn} and {νn} in [0,∞) with µn→0 and νn→0 as n→∞ and a strictly increasing
continuous function ψ : [0,∞)→ [0,∞) with ψ(0)=0 such that

‖T(PT)n−1(x)−T(PT)n−1(y)‖≤‖x−y‖+µnψ(‖x−y‖)+νn , (1.2)

for all x,y∈C and n∈N.

For the sake of convenience, we restate the following concepts and results.

Let E be a Banach space with its dimension greater than or equal to 2. The modulus
of convexity of E is the function δE(ε) : (0,2]→ [0,1] defined by

δE(ε)= inf
{

1−‖
1

2
(x+y)‖ :‖x‖=1,‖y‖=1, ε=‖x−y‖

}

.

A Banach space E is uniformly convex if and only if δE(ε)>0 for all ε∈ (0,2].

Definition 1.4. Let S= {x∈E : ‖x‖= 1} and let E∗ be the dual of E, that is, the space of
all continuous linear functionals f on E. The space E has:

(i) Gâteaux differentiable norm if

lim
t→0

‖x+ty‖−‖x‖

t

exists for each x and y in S .
(ii) Fréchet differentiable norm [14] if for each x in S , the above limit exists and is

attained uniformly for y in S and in this case, it is also well-known that

〈h, J(x)〉+
1

2
‖x‖2≤

1

2
‖x+h‖2 ≤〈h, J(x)〉+

1

2
‖x‖2+b(‖x‖) (∗)


