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Abstract

Recently, the matrix factorization model attracts increasing attentions in handling

large-scale rank minimization problems, which is essentially a nonconvex minimization

problem. Specifically, it is a quadratic least squares problem and consequently a quar-

tic polynomial optimization problem. In this paper, we introduce a concept of the SNIG

(“Second-order Necessary optimality Implies Global optimality”) condition which stands

for the property that any second-order stationary point of the matrix factorization model

must be a global minimizer. Some scenarios under which the SNIG condition holds are

presented. Furthermore, we illustrate by an example when the SNIG condition may fail.
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1. Introduction

1.1. Problem description

Consider the following matrix factorization problem

minimize
Y ∈Rn×k,Z∈Rm×k

f(Y, Z) :=
1

2
||A(Y Z⊤)− b||22 =

1

2

p
∑

i=1

(

〈Ai, Y Z⊤〉 − bi
)2

, (1.1)

where b ∈ R
p is a column vector, A ∈ B(Rn×m,Rp) is a linear operator mapping n×m matrices

onto p-dimensional Euclidean space. Namely,

A(X) = (〈A1, X〉, ..., 〈Ap, X〉)⊤ ,
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where Ai ∈ R
n×m(i = 1, ..., p) are the p column matrices of A and 〈W1,W2〉 := tr(W⊤

1 W2)

designates the inner product of two matrices W1 and W2 with the same size. Denoting the

adjoint operator of A by A⊤ : Rp 7→ R
n×m, it is not difficult to verify that

A⊤(y) =

p
∑

i=1

yiAi.

1.2. Existing works

Model (1.1) appears to be a practical and efficient way for solving low-rank optimization

problem. It is also arisen from many areas of scientific and engineering applications including

matrix completion, principle component analysis (PCA) and others [1, 8, 21]. LMaFit [28],

for instance, using a series of matrix factorization models with different k (the approximation

of the optimal rank) to describe the matrix completion problem, turns out to be an efficient

and robust alternative to the convex relaxation model [3, 7, 11, 18] based on nuclear norm

relaxation [4–6, 12, 19, 25]. Matrix factorization is also used to tackle semidefinite programs

(SDP) problems. For instance, [2, 14] introduced an equivalent factorization model for SDP

through the Cholesky decomposition. Mishra in [19] used a factorization to make the trace

norm differentiable in the search space and the duality gap numerically computable, which is a

similar approach to SVD.

However, the factorization model (1.1) is nonconvex. More specifically, it is a quartic poly-

nomial optimization problem. It may contain exponential number of local minimizers or saddle

points. Hence, solving problem (1.1) to the global optimality is usually unachievable.

Recently, Candès and Li [9] proposed a so-called Wirtinger Flow (WF) method to solve

the phase retrieval problem, which is, like (1.1), essentially a quardratic least squares problem

and quartic polynomial problem. The WF algorithm consists of two phases, one is a careful

initialization stage realized by a spectral method, and the other is the local minimization

stage invoking a gradient descent algorithm with a restricted stepsize. The authors proved

that if the random sampling vectors obey certain distribution and there is no noise in the

observation, the sequence generated by the gradient descent scheme will converge linearly to a

global solution with high probability. Sun and Luo in [22] applied a similar idea to analyze the

matrix completion problems described by factorization formulation, in which an initialization

step is followed by a general first-order algorithm framework. Under the standard assumptions

on incoherence condition [4] and the random observations similar to [9], the authors of [22]

showed their framework can converge to a global solution linearly. Ge et. al [10] proved that

matrix completion problem, a special case of (1.1), does not have spurious local minimum under

the positive definiteness and randomness assumptions on the target matrix, i.e. the observation

vector b in our model (1.1).

1.3. Our contributions

Even if the linear operator A of problem (1.1) does not involve any random property, it is

observed that some local optimal solvers can often find a global solution of (1.1) by starting

from a randomly chosen initial point. In this paper, we theoretically investigate the relationship

between the global optimality of problem (1.1) and its second-order optimality under certain

scenarios, which can partly explain the above mentioned phenomenon.

Note that if there exists a nonzero vector c ∈ R
p such that A⊤(c) = 0, the linear operator

A is row linearly dependent which implies the redundancy of the observations A(Y Z⊤) = b.


