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Abstract

We present a new Dirichlet boundary condition for the rate-type non-Newtonian dif-

fusive constitutive models. The newly proposed boundary condition is compared with

two such well-known and popularly used boundary conditions as the pure Neumann condi-

tion [1] and the Dirichlet condition by Sureshkumar and Beris [2]. Our condition is demon-

strated to be more stable and robust in a number of numerical test cases. A new Dirichlet

boundary condition is implemented in the framework of the finite difference Marker and

Cell (MAC) method. In this paper, we also present an energy-stable finite difference MAC

scheme that preserves the positivity for the conformation tensor and show how the addition

of the diffusion helps the energy-stability in a finite difference MAC scheme-setting.
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1. Introduction

The benchmark computation of the Oldroyd-Bmodel at relatively largeWeissenberg number

has for decades been elusive for numerical rheologists. While there has been significant progress

toward resolving this issue [3, 4], beyond critical Weissenberg number, the mesh convergence

is shown to be lost in numerical calculations. A local analysis of the stress behavior for the

benchmark problem [5] presents some indication of the difficulty of simulating highly elastic

flows of the Oldroyd-B model. Much attention is then drawn to include the stress diffusion

in the model for the stability to tackle the high Weissenberg number problem posed for the

Oldroyd-B model. The Oldroyd-B model is a generic viscoelastic model that has its origin in

continuum mechanics [6–8], but it can be derived from a microscopic model as well [9]. As

discussed in [10], a microscopic derivation [9, 11] of the Oldroyd-B model indicates that two

regularizing terms can be introduced for the second moment equation as follows:
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where M
ε is the second moment, D/Dt is the material derivative, ε2 is a positive diffusion

coefficient, Jα is a certain mollifier operator with a positive parameter α and δ is the identity
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tensor. There are two stabilizing terms: the diffusion coefficient ε2 and the mollified velocity.

While the diffusion coefficient ε2 is very small for dilute solutions of polymers, ranging from

10−7 to 10−9 in general, the contribution of the stress diffusion can increase up to 10−3 for

narrow channels [12]. The role played by the mollifier can be found at [10, 13–15], in which

the regularized model is proven to be well-posed even without the diffusion. In addition, a

recent work by Constantin et al. [16] established the global regularity of the two dimensional

diffusive Oldroyd-B model even if the theory may not cover the bounded domain. It is therefore

anticipated that simulations of highly elastic flows can be performed for the regularized model.

In fact, the addition of the diffusion term has been successfully demonstrated in [2, 17].

Simulations of such regularized models apparently induce an issue on how to impose accurate

boundary conditions for Mε [18]. A popular boundary condition in practice and theory [1, 10,

19] is the pure Neumann condition. Another boundary condition is the Dirichlet boundary

condition introduced by Sureshkumar and Beris [2, 17]. It has been widely and successfully

used for turbulent viscoelastic channel flows [20–23]. Some other boundary conditions have also

been discussed in literature [12, 24–27]. In this paper, we propose a new boundary condition

and demonstrate that the newly proposed condition is better in many test cases than the pure

Neumann condition and the Dirichlet condition by Sureshkumar and Beris [2] in stability and

robustness, thereby addressing successfully the boundary condition issue. It is worthy to note

that our new boundary condition can be easily extended to such many relevant diffusive complex

fluid models as liquid crystal polymers [28] or the diffusive Johnson-Segalman model [29–31].

The robustness of certain boundary condition has been made through the comparison between

the result obtained by simulating the diffusive model with the boundary condition and that

by simulating non-diffusive model (ε2 = 0). Note that the diffusion coefficient is generally not

too large. The stability will be measured in terms of the Weissenberg number that can be

simulated.

A new Dirichlet boundary condition is implemented in the framework of the finite difference

Marker and Cell (MAC) method. In this paper, we also present an energy-stable finite difference

MAC [32,33] scheme that preserves the positivity for the conformation tensor and show how the

addition of the diffusion helps the energy-stability in a finite difference MAC scheme-setting.

To our best knowledge, it is the fist time in this paper to show the effect of the diffusion toward

the enhancement of the stability. In addition, our result is shown to help achieve better mesh

convergence. The mesh convergence is often very difficult to achieve for the simulation of the

non-diffusive models at high Weissenberg number regimes [34, 35].

Throughout this paper, we use the standard notation for Sobolev spaces: Hp(Ω) denotes

the classical Sobolev space of scalar functions on a bounded domain Ω ⊂ R
d (d = 1, 2 or 3)

whose derivatives up to order p (1 ≤ p <∞) are square integrable, with the full norm ‖ ·‖p and

the corresponding semi-norm | · |p. The symbol H1
0 (Ω) denotes the subspace of H1(Ω) whose

trace vanishes on the boundary ∂Ω. The space Lp(0, T ;H1(Ω)) for 1 ≤ p < ∞ is the Hilbert

space consisting of functions f(x, t) : Ω× [0, T ] 7→ R such that

(∫ T

0

‖f(·, ν)‖p1 dν
)1/p

<∞. (1.2)

The symbols ‖ · ‖∞ and ‖ · ‖0 denote the usual L∞ and L2 norms, respectively. The symbols

(·, ·) and 〈·, ·〉 denote the classical L2-inner product and the dual pairing, respectively. The


