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Abstract

In this paper, we couple the parareal algorithm with projection methods of the trajec-

tory on a specific manifold, defined by the preservation of some conserved quantities of

stochastic differential equations. First, projection methods are introduced as the coarse

and fine propagators. Second, we apply the projection methods for systems with conserved

quantities in the correction step of original parareal algorithm. Finally, three numerical

experiments are performed by different kinds of algorithms to show the property of con-

vergence in iteration, and preservation in conserved quantities of model systems.

Mathematics subject classification: 60H10, 60H35, 65Y05

Key words: Stochastic differential equation, Parareal algorithm, Conserved quantity, Structure-

preserving method.

1. Introduction

Designing highly efficient algorithms is an important subject of numerical computation due

to the computational time and memory issues in the solution of large scale problems. The

technique of parallel algorithms attracted more and more attention in the past few years, con-

taining domain decomposition method in spatial direction and the parallel in time direction

generally. The parareal algorithm, our focus in the sequel, was first introduced by Lions et

al. [1], further work modified by Bal and Maday in [2], and has attracted vast attention in the

last decade. Compared with other parallel approaches, this algorithm belongs to time-parallel

category. The general idea of parareal algorithm contains roughly three steps as follows. First,

we obtain an approximate solution on a coarse time-step by a rough solver. Second, we use

another more accurate solver to get the approximation on each coarse time interval (splitting

the coarse time interval into more fine time domain) performed in parallel with initial values

computed in the first step. Finally, combining the values of the above two steps in the coarse

time grids, we obtain a new approximation value by a prediction and correction iteration. In
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general, this algorithm has better parallel performance and is easy to perform, which moti-

vates the development of efficient parallel methods for time dependent problems. Since the

parareal algorithm was proposed, many efforts have been made to analyze it theoretically [3]

and numerically, which verify the effectiveness of the parareal algorithm for a large various of

problems, including control theory [4], Navier-Stokes problem [5] and Hamiltonian differential

equations [6, 7] for instance.

Stochastic differential equations (SDEs) have attracted considerable attention in order to

obtain much more realistic mathematical models in many scientific disciplines, such as physics,

molecular biology, population dynamics and finance [8,9]. However, it is difficult to find explicit

solutions of SDEs analytically; therefore, there has been tremendous interest in developing

effective and reliable numerical methods for SDEs (e.g. [10–12] and references therein). It is

also a significant issue whether some geometric features of SDEs are preserved in performing

reliable numerical methods, especially for long-time simulation, which is as important as the

deterministic case [13,14]. In practice, they are time consuming, so the parallel techniques can

be considered to speed up the original integrator. For stochastic problem, the application of

parallel algorithm are relatively few. For example, the parareal algorithm has been applied

to stochastic ordinary differential equations with filter problems [15] and stochastic models in

chemical kinetics [16]. However, to the best of our knowledge, no results on parareal algorithm

focusing on stochastic differential equations with conserved quantities. In order to apply the

parareal algorithm to SDEs with conserved quantities, as mentioned in [6, 7, 17], the original

algorithm are not able to share this kind of conservative property, namely, the preservation

of conserved quantities along the sample path of the exact solution, even though when the

coarse and fine integrators all have adequate conservative properties. Therefore, the behavior

of long time numerical simulation is not enjoyed as the original system itself has. In this

paper, we mainly utilize the projection methods for SDEs with conserved quantities as the

basic propagators and the parareal algorithm with a projection corrector, which preserve some

conserved quantities of the exact flow as proposed in [6].

The rest of the paper is organized as follows. Section 2 briefly recalls the parareal algorithm

for general time-dependent problem. Section 3 discusses the procedure projection methods for

SDEs with conserved quantities, and gives the corresponding mean-square convergence. Next

in Section 4, we consider the parareal algorithm focusing on the SDEs with certain conserved

quantities, which combines the ideas of the previous two sections. Finally, three typical SDE

examples are chosen to perform numerical tests in Section 5.

2. The Original Parareal Algorithm

In this section, we first review the original parareal algorithm for a general initial-value

problem: {
u′(t) = f(t, u(t)), t ∈ [0, T ],

u(0) = u0,
(2.1)

where f : R × R
d → R

d is a suitable function to ensure the well-posedness of (2.1). To

perform the parareal algorithm, we first divide time interval [0, T ] into N uniform large time

intervals [Tn, Tn+1], with step-size ∆T = Tn+1 − Tn n = 0, 1, . . . , N − 1, and N = T
∆T . Then,

we further divide every large interval [Tn, Tn+1] into J small time intervals [tn+ j

J
, tn+ j+1

J
],

j = 0, 1, . . . , J − 1. With that, two numerical propagators, the coarse propagator G and the

fine propagator F , are needed here. In fact, G is usually easy to solve with low convergence


