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ANALYSIS OF A FULLY DISCRETE FINITE ELEMENT

METHOD FOR THE MAXWELL–SCHRÖDINGER SYSTEM IN

THE COULOMB GAUGE

CHUPENG MA, LIQUN CAO, AND JIZU HUANG

Abstract. In this paper, we consider the initial-boundary value problem for the time-dependent
Maxwell–Schrödinger system in the Coulomb gauge. We propose a fully discrete finite element
scheme for the system and prove the conservation of energy and the stability estimates of the
scheme. By approximating the vector potential A and the scalar potential φ respectively in two
finite element spaces satisfying certain orthogonality relation, we tackle the mixed derivative term
in the discrete system and make the numerical computations and the theoretical analysis more
easier. The existence and uniqueness of solutions to the discrete system are also investigated.
The (almost) unconditionally error estimates are derived for the numerical scheme without cer-

tain restriction like τ ≤ Chα on the time step τ by using a new technique. Finally, numerical
experiments are carried out to support our theoretical analysis.
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1. Introduction

In this paper, we consider one of the fundamental equations of nonrelativistic
quantum mechanics, the Maxwell–Schrödinger (M-S) system, which describes the
time-evolution of an electron within its self-consistent generated and external elec-
tromagnetic fields. In this system, the Schrödinger’s equation can be written as
follows:

(1) i~
∂Ψ

∂t
=
{ 1

2m
[i~∇+ qA]

2
+ qφ+ V

}
Ψ in ΩT ,

where ΩT = Ω× (0, T ), Ψ, m, and q are respectively the wave function, the mass,
and the charge of the electron. V is the time-independent potential energy and
is assumed to be bounded in this paper. The vector potential A and the scalar
potential φ are obtained by solving the following equations:

(2) E = −∇φ−
∂A

∂t
, B = ∇×A,

where the electric fields E and the magnetic fieldsB satisfy the Maxwell’s equations:

(3)
∇×E+

∂B

∂t
= 0, ∇ ·B = 0,

1

µ
∇×B− ǫ

∂E

∂t
= J, ∇ · (ǫE) = ρ.

Here ǫ and µ denote the electric permittivity and the magnetic permeability of the
material, respectively. The charge density ρ and the current density J are defined
as follows:

(4) ρ = q|Ψ|2, J = −
iq~
2m

(
Ψ∗∇Ψ−Ψ∇Ψ∗

)
−

|q|2

m
|Ψ|2A.

Here Ψ∗ denotes the conjugate of Ψ.
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Substituting (2) into (3) and combining (1) and (4), we obtain the following M-S
system

(5)





i~
∂Ψ

∂t
=

{
1

2m
[i~∇+ qA]2 + qφ+ V

}
Ψ in ΩT ,

−
∂

∂t
∇ ·
(
ǫA
)
−∇ ·

(
ǫ∇φ

)
= q|Ψ|2 in ΩT ,

ǫ
∂2A

∂t2
+∇×

(
µ−1∇×A

)
+ ǫ

∂(∇φ)

∂t
= J in ΩT ,

J = −
iq~
2m

(
Ψ∗∇Ψ−Ψ∇Ψ∗

)
−

|q|2

m
|Ψ|2A in ΩT ,

Ψ, φ,A subject to the appropriate initial and boundary conditions.

We assume that Ω ⊂ Rd (d = 2, 3) is a bounded Lipschitz domain. The total
energy of the system, at time t, is defined as follows

(6)
E(t) =

∫

Ω

(1
2

∣∣ (i∇+ qA)Ψ(t,x)
∣∣2 + V |Ψ(t,x)|2

+
ǫ

2
|E(t,x)|2 +

1

2µ
|B(t,x)|2

)
dx.

For a smooth solution (Ψ,A, φ) satisfying certain appropriate boundary conditions,
the energy is a conserved quantity.

It is well known that the solutions of the above M-S system are not uniquely
determined. In fact, the M-S system is invariant under the gauge transformation:

(7) Ψ −→ Ψ′ = eiqχΨ, A −→ A′ = A+∇χ, φ −→ φ′ = φ−
∂χ

∂t
,

for any sufficiently smooth function χ : Ω×(0, T )→ R. That is, if (Ψ,A, φ) satisfies
the M-S system, then so does (Ψ′,A′, φ′).

In view of the gauge freedom, to obtain mathematically well-posed equations,
we can impose some extra constraint, commonly known as gauge choice, on the
solutions of the M-S system. In this paper, we study the M-S system in the Coulomb
gauge, i.e. ∇ ·A = 0.

In this paper, we employ the atomic units, i.e. ~ = m = q = 1. For simplicity,
we assume that ǫ = µ = 1. The M-S system in the Coulomb gauge (M-S-C) can be
reformulated as follow:

(8)





−i
∂Ψ

∂t
+

1

2
(i∇+A)

2
Ψ+ VΨ+ φΨ = 0 in ΩT ,

∂2A

∂t2
+∇× (∇×A) +

∂(∇φ)

∂t
+

i

2

(
Ψ∗∇Ψ −Ψ∇Ψ∗

)

+|Ψ|2A = 0 in ΩT ,

−∆φ = |Ψ|2 in ΩT .

In this paper, the M-S-C system (8) is considered in conjunction with the fol-
lowing initial boundary conditions:

(9)

{
Ψ(x, t) = 0, A(x, t)× n = 0, φ(x, t) = 0 on ∂Ω× (0, T ),

Ψ(x, 0) = Ψ0(x), A(x, 0) = A0(x), At(x, 0) = A1(x) in Ω,

with ∇ ·A0 = ∇ ·A1 = 0.
For the M-S-C system, the energy E(t) takes the following form

(10)

E(t) =

∫

Ω

(
1

2

∣∣ [i∇+ qA] Ψ
∣∣2 + V |Ψ|2 +

1

2

∣∣∂A
∂t

∣∣2 + 1

2
|∇ ×A|2 +

1

2
|∇φ|2

)
dx.


