A Note on a Theorem of T. J. Rivlin

Abdullah Mir*, Ajaz Wani and Imtiaz Hussain
Department of Mathematics, University of Kashmir, Srinagar, 190006, India

Received 2 August 2017; Accepted (in revised version) 11 May 2018

[^0]
1 Introduction and statement of results

For an arbitrary entire function $f(z)$, let $M(f, r)=\max _{|z|=r}|f(z)|$. For a polynomial $P(z)=$ $\sum_{j=0}^{n} a_{j} z^{j}$ of degree n, it is known that

$$
\begin{equation*}
M(P, r) \geq r^{n} M(P, 1), \quad r \leq 1 . \tag{1.1}
\end{equation*}
$$

Inequality (1.1) is due to Varga [7] who attributed it to Zarantonello.
It is noted that equality holds in (1.1) if and only if $P(z)$ has all its zeros at the origin, so it is natural to seek improvement under appropriate assumption on the zeros of $P(z)$. It was shown by Rivlin [6] that if $P(z) \neq 0$ in $|z|<1$, then (1.1) can be replaced by

$$
\begin{equation*}
M(P, r) \geq\left(\frac{1+r}{2}\right)^{n} M(P, 1) \quad \text { for } r \leq 1 \tag{1.2}
\end{equation*}
$$

As a generalization of (1.2), Govil [2] proved that if $P(z) \neq 0$ in $|z|<1$, then for $0<r \leq R \leq 1$,

$$
\begin{equation*}
M(P, r) \geq\left(\frac{1+r}{1+R}\right)^{n} M(P, R) \tag{1.3}
\end{equation*}
$$

In 1992, Qazi [4] generalized (1.3) in a different direction and proved that if $P(z)=a_{0}+$ $\sum_{j=\mu}^{n} a_{j} z^{j}, 1 \leq \mu<n$ is a polynomial of degree n not vanishing in $|z|<1$ then for $0<r<R \leq 1$,

$$
\begin{equation*}
M(P, r) \geq\left(\frac{1+r^{\mu}}{1+R^{\mu}}\right)^{\frac{n}{\mu}} M(P, R) . \tag{1.4}
\end{equation*}
$$

*Corresponding author. Email addresses: mabdullah_mir@yahoo.co.in (A. Mir), theajazwani@yahoo.com (A. Wani), dar.imtiaz5@gmail. com (I. Hussain)

More recently, Govil and Nwaeze [3] besides proving some other results, also proved the following generalization and refinement of (1.3).
Theorem 1.1. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$. If $P(z) \neq 0$ in $|z|<k, k \geq 1$, then for $0<r<R \leq 1$,

$$
\begin{equation*}
M(P, r) \geq \frac{(1+r)^{n}}{(1+r)^{n}+(R+k)^{n}-(r+k)^{n}}\left\{M(P, R)+m \ln \left(\frac{R+k}{r+k}\right)^{n}\right\} \tag{1.5}
\end{equation*}
$$

where $m=\min _{|z|=k}|P(z)|$.
Some more results related to inequalities that compares the growth of a polynomial on $|z|=r$ and $|z|=R$, where $r<R$, can be found in (see $[4,8]$).

In this note, we present the following extension of Theorem 1.1. As we shall see our result provides refinements of (1.2), (1.3) and (1.4) as well.
Theorem 1.2. Let $P(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}, 1 \leq \mu<n$. If $P(z) \neq 0$ in $|z|<k, k \geq 1$, then for $0<r<R \leq 1$,

$$
\begin{equation*}
M(P, r) \geq \frac{\left(1+r^{\mu}\right)^{\frac{n}{\mu}}}{\left(1+r^{\mu}\right)^{\frac{n}{\mu}}+\left(R^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}-\left(r^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}}\left\{M(P, R)+m \ln \left(\frac{R^{\mu}+k^{\mu}}{r^{\mu}+k^{\mu}}\right)^{\frac{n}{\mu}}\right\} \tag{1.6}
\end{equation*}
$$

where $m=\min _{|z|=k}|P(z)|$.
Remark 1.1. For $\mu=1$, Theorem 1.2 reduces to Theorem 1.1. Taking $k=1$ in Theorem 1.2 we get the following refinement of (1.4).
Corollary 1.1. Let $P(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}, 1 \leq \mu<n$. If $P(z) \neq 0$ in $|z|<1$, then for $0<r<R \leq 1$,

$$
M(P, r) \geq\left(\frac{1+r^{\mu}}{1+R^{\mu}}\right)^{\frac{n}{\mu}}\left\{M(P, R)+m \ln \left(\frac{1+R^{\mu}}{1+r^{\mu}}\right)^{\frac{n}{\mu}}\right\}
$$

where $m=\min _{|z|=1}|P(z)|$.
If we take $R=1$ in Theorem 1.2, we get
Corollary 1.2. Let $P(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}, 1 \leq \mu<n$. If $P(z) \neq 0$ in $|z|<k, k \geq 1$, then for $0<r<1$,

$$
M(P, r) \geq \frac{\left(1+r^{\mu}\right)^{\frac{n}{\mu}}}{\left(1+r^{\mu}\right)^{\frac{n}{\mu}}+\left(1+k^{\mu}\right)^{\frac{n}{\mu}}-\left(r^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}}\left\{M(P, 1)+m \ln \left(\frac{1+k^{\mu}}{r^{\mu}+k^{\mu}}\right)^{\frac{n}{\mu}}\right\},
$$

where $m=\min _{|z|=k}|P(z)|$.
The following extension and refinement of inequality (1.2) due to Rivlin [6] immediately follows from Corollary 1.2 by taking $k=1$ in it.
Corollary 1.3. Let $P(z)=a_{0}+\sum_{j=\mu}^{n} a_{j} z^{j}, 1 \leq \mu<n$. If $P(z) \neq 0$ in $|z|<1$, then for $0<r<1$,

$$
M(P, r) \geq\left(\frac{1+r^{\mu}}{2}\right)^{\frac{n}{\mu}}\left\{M(P, 1)+m \ln \left(\frac{2}{1+r^{\mu}}\right)^{\frac{n}{\mu}}\right\},
$$

where $m=\min _{|z|=1}|P(z)|$.

[^0]: Abstract. In this paper, we obtain a result that improves the results of Govil and Nwaeze, Qazi and the classical result of Rivlin.
 Key Words: Polynomial, maximum modulus, zeros.
 AMS Subject Classifications: 30A10, 30C10, 30C15

